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EEG-Based Decoding of Selective Visual
Attention in Superimposed Videos

Yuanyuan Yao “, Wout De Swaef

Abstracit—Selective attention enables humans to effi-
ciently process visual stimuli by enhancing important el-
ements and filtering out irrelevant information. Locating
visual attention is fundamental in neuroscience with poten-
tial applications in brain-computer interfaces. Conventional
paradigms often use synthetic stimuli or static images,
but visual stimuli in real life contain smooth and highly
irregular dynamics. We show that these irregular dynamics
can be decoded from electroencephalography (EEG) sig-
nals for selective visual attention decoding. To this end,
we propose a free-viewing paradigm in which participants
attend to one of two superimposed videos, each showing
a center-aligned person performing a stage act. Superim-
posing ensures that the relative differences in the neural
responses are not driven by differences in object locations.
A stimulus-informed decoder is trained to extract EEG com-
ponents correlated with the motion patterns of the attended
object, and can detect the attended object in unseen data
with significantly above-chance accuracy. This shows that
the EEG responses to naturalistic motion are modulated
by selective attention. Eye movements are also found to
be correlated to the motion patterns in the attended video,
despite the spatial overlap with the distractor. We further
show that these eye movements do not dominantly drive
the EEG-based decoding and that complementary informa-
tion exists in EEG and gaze data. Moreover, our results
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indicate that EEG may also capture neural responses to
unattended objects. To our knowledge, this study is the first
to explore EEG-based selective visual attention decoding
on natural videos, opening new possibilities for experiment
design.

Index Terms—Brain-computer interface, EEG, selective
visual attention decoding, video stimuli.

|. INTRODUCTION

N EVERYDAY life, humans are constantly exposed to a vast
I amount of visual information. To process this with limited
resources, the brain has developed a mechanism known as
selective visual attention, which enables individuals to prioritize
stimuli of interest in the visual field while suppressing others [1].
Decoding selective visual attention has been a popular research
topic in neuroscience and brain-computer interface communi-
ties, providing insights into the neural basis of attention and
offering potential applications in various fields. For example, it
can aid communication and control for individuals with severe
paralysis [2], [3], diagnosis of attention and consciousness-
related disorders [4], [5], [6], rehabilitation of cerebral-visual
impairment or cognitive deficits [7], [8], and optimization of
streaming processes in virtual reality [9].

Extensive research has been conducted on the mechanisms
underlying selective visual attention. These studies have shown
that, although the sensory representations of both attended and
unattended stimuli are present in the visual field, the attended
stimulus elicits stronger cortical responses [10], [11]. This
modulation effect of attention on neural responses enables the
neural-based decoding of selective visual attention. For example,
Kelly et al. [2] successfully decoded covert left/right spatial
attention from steady-state visual evoked potentials elicited by
flickering stimuli. The classification was based on the amplitude
of the evoked potentials at the flicker frequency, which was ap-
proximately doubled when the flickering stimulus was attended.

Apart from spatial locations, selective attention also fre-
quently targets specific objects. Attention enhances the features
of the attended object, such as its motion, color, or shape, even
when attended and unattended objects are superimposed [11],
[12]. Early studies using functional magnetic resonance imaging
(fMRI) have shown that it is possible to decode the category
of the attended object in an image with superimposed objects
from different categories [8], [13]. In more recent studies such
as [14], the categories of unattended objects were also decoded
and compared with the decoding accuracy of attended objects,
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showing that the latter were more accurately decodable. These
studies trained classifiers only on brain signals to decode the ob-
ject category, whereas Horikawa et al. [15] incorporated image
features, decoding these features from the fMRI voxels using
linear regression. Additionally, a deep generator network was
appended after the regression model to generate images from the
output features. The overall model predicted the features of the
superimposed images and generated corresponding images that,
as shown in the study, were similar to the attended object. Efforts
have also been made to decode selective attention on superim-
posed images using electroencephalography (EEG) [5], [16], as
EEG has much more potential for real-world applications due to
its affordability and portability. Additionally, the high temporal
resolution of EEG enables the capture and analysis of neural
responses not only to static images but also to images presented
in rapid succession [16].

Previous studies provide valuable insights into the neural basis
of selective visual attention and demonstrate the feasibility of
decoding selective attention based on brain signals. However,
these studies primarily focus on synthetic stimuli and static or
rapid serial images of various objects or scenes, which do not
reflect the dynamic and continuous visual stimuli encountered in
real life. This motivates us to explore natural and more dynamic
visual stimuli: videos. EEG has a high temporal resolution
such that it can capture the fast dynamics of neural responses
elicited by the time-varying features within the video [17]. Using
EEG signals, we aim to decode the attended object in videos
with two moving objects (persons) that spatially overlap. As
we consider a naturalistic, free-viewing condition, the use of
overlapping objects is crucial for eliminating the possibility
that differences in neural responses are driven by different
spatial locations of the two objects (relative to the focus of
gaze) rather than by selective attention. This design enables us
to confidently attribute the decoding results to attention-based
modulation of neural signals. To the best of our knowledge,
no study has yet attempted to decode selective visual attention
based on EEG signals when viewing natural videos. This work
may lay the foundation for more naturalistic experiment design
in cognitive neuroscience and brain-computer interfaces, more
patient-friendly assessments of attention-related disorders or
cerebral-visual impairment, and attention tracking systems, e.g.,
for education and neuromarketing [18], [19]. It could also find
applications in augmented reality, such as identifying whether
the user’s attention is focused on the (superimposed) virtual or
real world [20].

In this work, the selective attention decoding is based on
stimulus reconstruction, identifying the attended object by com-
paring the temporal correlations between the EEG responses
and the features of the object(s) in the video. We choose this
correlation-based paradigm since direct classification based on
instantaneous features could overfit to confounds such as trial-
dependent EEG feature shifts [21], [22]. This paradigm has
been widely applied in neural tracking to speech and auditory
attention decoding [23], [24], [25], where a common practice
is to correlate the EEG signals with, for example, the envelope
of the speech signals and decode the attended speaker as the
one with the highest correlation. We hypothesize that a similar

differentiated neural processing for attended and unattended
stimuli exists in the visual sensory system using an analogous
feature in the visual domain. One that, like the auditory envelope,
correlates with EEG signals and is selectively enhanced through
attentional modulation. One candidate of such a feature is the
motion-encoding object-based optical flow proposed in [17],
which extracts a time series that contains the average optical
flow within the object at each time point, and was found to
have significant correlations with EEG signals. However, in [17],
the experiments used single-object videos without manipulating
attention, leaving it unclear how attention and competing stimuli
influence the results. In this study, we show that the correlation
between the EEG responses and this feature is indeed modulated
by attention, allowing us to decode selective visual attention.
Since participants are allowed to freely watch the videos without
fixating on a specific point (though tracking only one of two
center-aligned superimposed video objects), we also investigate
the possibility of decoding selective attention by correlating the
per-object optical flow time series with the eye movements,
comparing their performance with EEG-based decoding.

The rest of this paper is organized as follows: Section II details
the experimental setup, data preprocessing and feature extrac-
tion, introduces the analysis tools, and describes the evaluation
tasks and the practicalities of our implementation. Section III
presents the results and their implications, with a more in-depth
discussion in Section IV. Section V concludes the paper.

[l. MATERIALS AND METHODS
A. Stimuli

This study primarily focuses on the neural decoding of se-
lective visual attention when viewing natural videos with two
moving objects in a naturalistic, free-viewing condition. To
avoid confounds of audio in neural processing, the videos are
muted when presented to the participants. There is an important
restriction on the experiment videos: they must be single-shot,
i.e., with static camera angles and no scene changes. It is moti-
vated by previous studies that have shown that the discontinuities
due to shot cuts in videos can elicit strong neural responses [17],
[26], [27], which are absent in natural visual stimuli, and which
may lead to over-optimistic decoding performance [17].

We create video stimuli by superimposing pairs of single-shot
videos, each containing a single moving person. We superimpose
the videos rather than placing them side by side to ensure that
any modulation of the correlation between neural responses
and object motion is not confounded by the location of the
objects. In a pilot experiment, we found that spatially separating
two objects led participants to shift their gaze to the attended
object, leaving the unattended object in peripheral vision. This
resulted in much weaker neural responses for the unattended
object, making the selective attention decoding problem rather
trivial. Inspired by studies using superimposed images [8], [13],
[14], [15], [16], we center-align the objects in both videos and
superimpose them with 50% transparency (Fig. 1). This design
ensures that both objects remain simultaneously visible while
occupying the same spatial location, creating a more challenging
paradigm that represents a worst-case scenario for selective
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Fig. 1. Anillustration of creating superimposed videos. The objects in two single-shot videos are centered and overlaid with 50% transparency. A
white box is inserted in the top right corner to indicate the content-playing stage. For a detailed timeline of the experimental procedure, please refer
to Fig. 2.
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Fig. 2.

An illustration of creating experimental videos: The original video pairs are truncated, overlaid from the second minute, and prepended

with instruction frames. The videos in each pair are assigned to different trials.

attention decoding. Additionally, this approach prevents simply
decoding the attended object based on gaze point coordinates,
reducing potential confounds from eye movements.

14 single-shot, single-object videos with an average length
of 305s are selected, most of which are inherited from a pre-
vious study [17]. The frame rate is 30 Hz, and the resolution
is 1920 x 1080. The content of these videos includes a person
performing a specific stage act, such as dancing, acrobatics,
magic shows, and mime shows. The 14 videos are paired into 7
pairs: (videos ;, videos;),i € {1,2,...,7}. The videos in each
pair are not necessarily from different content categories but are
distinct enough both visually and in terms of motion patterns,
such that it is relatively easy for a participant to focus on one
object while ignoring the other.

Fig. 2 illustrates the procedure of creating the experiment
stimuli from these 7 pairs. In each pair, we truncate the videos
to the minimum length of the two, and superimpose them with
50% transparency, except for the first two minutes. In these first

two minutes, only the video of the attended object is visible
(i.e., with a 100% transparency for the unattended video). The
transition from single video to 50%-50% superimposed videos
is made smooth by linearly changing the transparency over two
seconds. Each video pair is presented twice, where the attended
object switches in both presentations. This means that the first
two minutes (showing only the attended object) is different in
both presentations, yet the remaining part (showing 50%-50%
superimposed videos) is exactly the same stimulus in both
presentations.

Instruction frames are prepended in each video. These in-
struction frames contain a QR code for synchronization and an
instruction text asking participants to always focus on the first
object presented during the first two minutes of the video. The
number of instruction frames is set to ensure they last longer
than 30 seconds and make the total video length a multiple of
one minute. A progress bar is embedded to indicate the start
of the video playback. The experiment consists of two trials
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of 42 minutes during which each video pair is presented once
(randomized across participants). In the second trial, the 7 pairs
are presented again, but with attention to the other object.

B. Participants and Data Acquisition

19 young, healthy adults participated in the experiment. All
have normal or corrected-to-normal vision and no history of
neurological disorders. The study is approved by the KU Leu-
ven Social and Societal Ethics Committee, and all participants
provided written informed consent before the experiment.

During the experiment, participants are seated comfortably
in a quiet, separate room, approximately 90 cm from the screen.
The stimuli (videos) are presented on a 22-inch monitor with
a resolution of 1920 x 1080 pixels and a refresh rate of 60 Hz.
Participants are instructed to watch the videos attentively and
naturally, and to minimize unnecessary movements for better
data quality. While participants watch the videos, their EEG
data are recorded using a BioSemi ActiveTwo system (BioSemi
B.V., Amsterdam) with 64 channels and a sampling rate of
2048 Hz. Eye movements are coregistered with EEG using four
electrooculogram (EOG) electrodes placed above and below the
right eye and on the outer canthi of both eyes. Participants also
wear a NEON eye tracker (Pupil Labs GmbH, Berlin) to acquire
gaze data at 200 Hz. Four markers are placed around the screen
for defining the surface that the gaze data are mapped to.

The experiment videos consist of interleaving instruction-
showing and content-playing stages, as detailed in Section II-A.
A small box is embedded in the top right corner of the videos
without occluding any content, serving as an indicator of the two
different stages. The box is black during the instruction stage and
turns white when the content starts to play, which is captured by
a photodiode fixed at the corresponding region and connected to
the EEG recorder. Synchronization between the EEG data and
the video stimuli is achieved by detecting the upper edges of
the photodiode signal. The embedded box is covered with black
tape to prevent distraction.

To synchronize the eye tracker data with the video stimuli, a
QR code is encoded during the instruction stage and is detected
post hoc from the videos recorded by the world camera of the
eye tracker. The time points at which the QR code appears are
identified and aligned with the corresponding time points during
the instruction stage. The first time point when the QR code
disappears from the video is the synchronization point between
the eye tracker data and the video stimuli.

The three data sources (EEG recorder, eye tracker, and video
stimuli) are thus synchronized. This synchronization is per-
formed per short video clip (4 ~ 8 minutes) in each trial, rather
than only once at the beginning, to prevent non-negligible time
lags caused by differences in the time clocks of each device.

C. Data Preprocessing

The EEG and EOG data are first segmented based on the
photodiode signals, which indicate the start of each content-
playing stage. Basic preprocessing is applied to each segment,
including interpolation of bad channels, average re-referencing,
high-pass filtering with a cutoff frequency of 0.5 Hz to remove

TABLE |
DATA MODALITIES EXTRACTED FROM THE RECORDED DATA

Modality | Abbreviation
64-channel EEG signal | FEG
4-channel EOG signal | EFOG
2D gaze coordinate | GAZE
Saccade (binary time series) | SACC
Velocity (1) calculated from gaze | GAZE_V
Velocity (1) calculated from EOG | EOG.V

drifts, notch filtering at 50 Hz to remove powerline noise, and
downsampling to 30 Hz (including anti-aliasing) to match the
video frame rate. The filters are zero-phase and thus no delays
are introduced.

From the eye tracker, we export the gaze coordinates mapped
to the screen surface, the start and end points of fixations, and the
time points of eye blinks. Saccades are identified as the end of
fixations and are represented as a binary time series, indicating
whether a saccade occurs at each frame. Eye blinks in the gaze
dataare linearly interpolated, and the gaze data are downsampled
to 30 Hz.

Eye movements can also be informative, as participants’ gaze
may track the movement pattern of the attended object. We
therefore extract a feature from both the gaze and the EOG data
that is representative for the velocity of the eye movements:

velocity = v/(a(t) — a(t — 1))2 + (b(t) — b(t — 1))2, (1)

where a(t) and b(t) represent the horizontal and vertical gaze
coordinates or the horizontal and vertical EOG channels at time
t, respectively.

Overall, six data modalities are extracted for further anal-
ysis, as summarized in Table I. The data are further divided
into two sets based on whether a single-object video or an
superimposed-object video is playing. The fade-in periods are
excluded from the analysis. Additionally, the first and last second
of each video segment are also excluded to avoid potential effects
caused by video onset and offset. In the end, the single-object
dataset contains 19 subjects x 14 videos x 2 minutes of data.
The superimposed-object dataset contains 19 subjects, 14 videos
with an average video length of 166 s and a standard deviation
(STD) of 76 s, totaling approximately 19 subjects x 38 minutes
of data. The instruction-showing stage at the beginning of each
video also serves as a short break for the participants and is a
total of 18 minutes long.

D. Video Feature Extraction

Our approach for decoding selective attention is by identifying
the temporal correlation between the dynamics in the video and
the stimulus-following neural responses that follow these time-
varying features. However, video data are high-dimensional,
leading to an explosion of model parameters if it would be used
in its raw format. Therefore, it is crucial to first extract relevant
features that elicit strong neural responses in order to reduce data
dimensionality. In [17], object-based optical flow (ObjFlow) and
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object-based temporal contrast (ObjTempCtr) were found to be
correlated with EEG signals. We select ObjFlow for this study,
as the performance of both features is comparable.

ObjFlow is defined as the average optical flow magnitude
within the object of interest:

ObjFlow = ﬁ > v(zt)], )
zcO

where |v(z,t)| denotes the magnitude of pixel velocity at
position z, time ¢, and |O| represents the number of pixels
in the object mask. In practice, the object mask is obtained
by applying a pre-trained object segmentation model, Mask
R-CNN [28]. The optical flow is calculated using the Gunnar-
Farneback method [29]. Features are extracted from each video
before superimposing them, ensuring that potential confounds
from artificial overlapping effects are avoided. All videos are
downsampled to 640 x 360 pixels to reduce computational cost
before feature extraction.

E. Correlation Analysis

Correlation analysis can be conducted on two or more views to
measure their temporal coupling, optionally controlling for the
effects of certain variables. In this section, we briefly review
canonical correlation analysis and its two extensions, partial
canonical correlation analysis and generalized canonical corre-
lation analysis, and explain their application to our data. All data
modalities and extracted features are centered before correlation
analysis.

1) Canonical Correlation Analysis (CCA): CCA is a method
for finding correlations between two sets of variables [30]. In this
study, it is used to quantify the correlations between the video
stimuli and the various data modalities introduced in Section II-C
and Table I. When correlating a data modality (e.g., EEG signals)
x(t) € RP= with video features y(t) € RPv, CCA finds linear
maps w,, € RP+ and w,, € RP» that maximize the correlation
between the transformed signals w x(t) and w,, y (t). Notably,
this process inherently filters out EEG artefacts that are not sys-
tematically correlated with video features. Mathematically, this
can be expressed as the following optimization problem [30]:

maximize E{[ng(t)][wgy(t)]}

subject to E{[w_>x(t)]*} =1,
E{[w,y(®)]*} =1, (3)

where E{-} denotes the expectation operator. Correlations be-
tween neighboring samples can also be incorporated by ex-
tending x(¢t) and y(¢) with L, — 1 and L, — 1 time-lagged
copies, respectively, which also allows to automatically cor-
rect for relative time delays between x(t) and y(t). w, and
w,, then become spatial-temporal, with dimensions D, L, and
D,L,. Solving problem (3) requires estimating the covari-
ance matrices R, = E{x(t)y(t)"} € RP=L=*Dvly R, =
E{x(t)x(t)"} € RP=L+*DaLe - and R, = E{y(t)y(t)"} €
RPvLy*PyLy which can be approximated by the sample co-
variance matrices.

While (3) only aims to find a single canonical component w,,
and w,, often higher-order canonical components are jointly

estimated. Let w} and w} denote the k-th order canonical

components, and x(t)" w% and y(t)'w" represent the k-th

canonical directions. These components, w’; and w¥, are linear
maps applied to the data such that the transformed signals
are orthogonal to all preceding canonical directions and are
maximally correlated. In compact form, the multi-component
version of (3) can be formulated as:

maximize Tr (WERTyWy)
W-’IE 1Wy

subjectto WIR,, W, = I,
W, R, W, = I, )

where K is the number of components, I is the identity matrix
of size K, W, € RP«LexE and W, € RPvLv*E gtore the
canonical components as columns, and Tr(-) denotes the trace of
a matrix. It can be shown that the solution to (4) can be obtained
by solving the following generalized eigenvalue decomposition

(GEVD) problem [31]:
Ry Ryy| [Wy 0 Ry | |W,

where A € R¥*K is a diagonal matrix containing the general-
ized eigenvalues (GEVLs). The first K canonical components
are the generalized eigenvectors (GEVCs) corresponding to the
K largest GEVLs. The components (columns of W, and W)
are rescaled to satisfy the constraints in (4).

2) Partial Canonical Correlation Analysis (PCCA): PCCA
was proposed by Rao in [32] as an extension of CCA to account
for the effects of confounding variables ¢ € RPele where D,
represents the dimension of the confounds and L. denotes the
number of time-lagged copies. Consider the problem discussed
in Section II-E1, where we aim to quantify the correlation
between EEG signals and video features. Eye movements, often
considered artefacts in EEG signals, may also correlate with
video features, as specific patterns in the video may provoke
particular eye movements. Therefore, it may be necessary to
control for the effects of eye movements, which are captured by
EOG signals.

PCCA involves one additional step compared to CCA: re-
moving the effects of the confounds ¢ from x and y by lin-
ear regression. Aggregating the samples of x, y, and c into
matrices X € RT*PaLe Yy ¢ RT*DPyly apnd C € RT*Pele
respectively, the residuals can be written as:

X, =X - P.X,
Y, =Y -P.Y,

(6a)
(6b)

where P, = C(CTC) !C7 is the projection matrix onto the
column space of C. The residuals X,. and Y. are then fed to the
input of the CCA method.

3) Generalized Canonical Correlation Analysis (GCCA):
GCCA is a generalization of CCA that can handle more than
two views, making it useful for applications such as finding
coherent EEG signals across multiple subjects. Two well-known
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formulations of GCCA are SUMCORR and MAXVAR [33].
In this study, we select MAXVAR because the SUMCORR
formulation does not have a closed-form solution [34].

MAXVAR-GCCA optimizes the decoders {W,, }V_, applied
to different views {X,,}V_; to minimize the pairwise distances
between the transformed views. An auxiliary variable S is in-
troduced to represent the shared subspace among the views, and
the optimization problem is formulated as:

N
inimi S — X, W,z
i 2, 18 - X Wl

subject to STS = 1. (7

For the joint analysis of EEG signals from all subjects, the
views X,, € RT*P=Ls represent the EEG signals from differ-
ent subjects, the matrices W,, € RP=L=*K are the per-subject
decoders applied to these signals, and the shared subspace
S € RT*K can be interpreted as the coherent EEG components
across subjects. Other modalities in Table I can be analyzed in
a similar way.

Denote the covariance matrix between two views X;, X; as
R;;. It can be shown that the solution to (7) can again be written
as a GEVD problem similar to (5) [35]:

RW = DWA, (8)
where
(W, R Rin
Wy R Ryw
Ry 0 0
0 Ry - 0
D=| . . . . )
0 0 Ryw

The columns of W are the GEVCs corresponding to the K
largest GEVLs. The shared subspace S can be obtained as the
sum of the transformed views:

N
S = Z Xan7

n=1

(10)

with scalings applied to each column of S to ensure that STS =
Ix.

Analogous to PCCA, the effects of confounds such as eye
movements can be removed from each view by regressing out
the confounds and then applying GCCA to the residuals. When
performing group-level analysis using GCCA, inter-subject cor-
relation (ISC) can be used to assess the overall similarity of the
extracted components across different views [36]. ISC is defined
as the average pairwise correlation between all component pairs:

N-1 N
2
ISCp = ————= > Y comr(X;wf,X;wh), (11
N(N —-1) i=1 j=i+1

where corr(-, -) denotes the Pearson correlation, and w¥ and w;“
are the k-th columns of W; and W ;, respectively.

F. Evaluation

The correlations obtained from (P)CCA provide insight into
how well the data modalities and video features are temporally
coupled. On the other hand, the ISCs calculated from GCCA
indicate how well neural responses or eye movements are syn-
chronized across subjects. In addition to these measures, we
also perform two tasks to evaluate the decodability of attended
objects, which is the primary focus of this study: a selective
visual attention decoding (SVAD) task and a match-mismatch
(MM) task.

The objective of both decoding tasks is to distinguish the
attended video segment from an imposter (unattended or mis-
matched segment) using various data modalities. The only dif-
ference lies in whether the imposter is the observed but unat-
tended competing video segment (SVAD) or an unobserved non-
competing segment from a different time point in the same test
set (MM). Since these tasks are highly similar but with different
inputs, they can be tackled using the same decoding method. For
example, with EEG data, the EEG decoders W, and stimulus
encoders W, are trained on the EEG data and attended/matched
video features using (P)CCA. During the testing phase, the
previously obtained encoders and decoders are applied to the
held-out test data, and the target video segment is identified by
selecting the video that shows the strongest correlation with the
EEG across the CCA components. The chance level for both
tasks is 50%.

Intuitively, SVAD is more challenging because information
from the unattended stimuli might also be decodable using the
trained filters, making discrimination between the attended and
unattended stimuli more difficult. In contrast, MM is easier
since the imposter is not observed by the participant and can
therefore not generate any correlated signal components in any
of the recorded modalities. Therefore, evaluating both tasks
together not only indicates how well the attended stimuli can
be decoded but also provides insights into whether the analyzed
data modality captures information from the unattended stimuli.

G. Practicalities

a) Cross-validation: The accuracies and correlations re-
ported in the following sections are cross-validated using a
leave-one-pair-out scheme. Specifically, data from one video
pair are left out for testing (this includes both presentations of
the same pair), while data from the remaining pairs are used
for training. This process is repeated 7 times, corresponding to
the 7 video pairs, and the results are averaged across all pairs.
In the single-object dataset, the training set and test set have a
fixed length of 24 min and 4 min, respectively (2 X 2 min per
pair). In the superimposed-object dataset, the training set has an
average length of 33.2min (STD = 2.5 min), and the test set
has an average length of 5.5 min (STD = 2.5 min).

b) Time lags: The number of time lags in the CCA proce-
dures are set in accordance with [17]. Specifically, the video
feature encoders have L, = 15 lags, capturing video features
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from approximately the past 0.5 s to the current time point. For
EEG decoders, the (P)CCA model uses L, = 3 lags centered
around the current time point, spanning approximately from
—33 ms to 33 ms, while the GCCA model employs L, = 5 lags,
covering approximately —67 ms to 67 ms. These numbers are
also applied to other data modalities in Table I, as a grid search
indicates that the results are not highly sensitive to the choice of
the number of time lags.

c) Classifier: Multiple components can be extracted from
(P)CCA, with each canonical component pair having a cor-
responding correlation value. To measure the “closeness” of
the data to the video candidates, we sum the correlations of
the first two component pairs, as these often show statistically
significant correlation values [17]. The video segment with the
higher score is then identified as the attended video. Although
simple classifiers such as support vector machines or random
forests can be applied to the complete set of obtained correla-
tions, they do not yield significant improvements, and therefore
the added complexity and increased risk for overfitting is not
justified.

d) Statistical tests: We assess the significance of the corre-
lations using a permutation test with phase scrambling. In phase
scrambling, the phase components in the frequency domain are
randomized to disrupt the temporal structure of the data while
preserving the power spectrum [37]. A null distribution of corre-
lations is generated by repeating the correlation analysis on the
phase-scrambled data 500 times per fold. P-values are calculated
as the proportion of correlations in the null distribution that
are more extreme than the observed correlation (two-tailed).
Note that this provides a relatively rigorous bound since the
null distribution is computed from data with the same power
spectrum. For decoding tasks, we assess whether the decoding
accuracy is significantly above chance using a similar permuta-
tion approach. Test EEG trials are circularly shifted by a random
number of trials to break their temporal alignment with the
motion features. The null distribution is constructed by repeating
the decoding process 100 times per subject using such shifted
data, yielding a total of 1900 accuracy values. P-values are
calculated using the same method as in the significance test for
correlations. A correlation or accuracy is considered significant
if it exceeds the threshold (significance level) corresponding
to a p-value of 0.05, which is the 97.5th percentile of the null
distribution. For comparing performance between different tasks
or data modalities, we employ the Wilcoxon signed-rank test.
When multiple comparisons are involved, p-values are adjusted
using the Benjamini-Hochberg (BH) method [38]. Performance
differences are considered significant if the (adjusted) p-value
is less than 0.05.

IIl. RESULTS
A. Correlations are Modulated by Attention

A core assumption in our method is that the correlations
between the video features and the collected data modalities are
modulated by attention. If this assumption holds, the attended
object can be identified by comparing the relative strengths of
these correlations between the attended and unattended objects.

In this experiment (using the superimposed-object dataset), the
encoders and decoders are trained on the ObjFlow feature of the
attended object and each data modality using CCA. The correla-
tions are then computed on the test set for the ObjFlow features
of both the attended and unattended objects. The obtained cor-
relation coefficients for the first two canonical components are
shown in Fig. 3.

The first observation is that the correlations with attended
features (in blue) are generally higher than those with unattended
features (in orange), especially for the first canonical component.
Therefore, we can conclude that correlations are modulated by
attention, justifying the design of our classifier (Section II-G).
Moreover, the correlations with unattended features are non-
significant for all modalities, whereas for the attended case,
the significance level is around or below the median for the
modalities FEG, GAZE_V, and SACC. It is also worth
noting that the correlations between different modalities are not
directly comparable, as the significance levels differ due to the
different spectral characteristics of each modality. Their perfor-
mance can be better compared in specific tasks, as specified
below.

B. Selective Visual Attention is Decodable From EEG
and Eye Movements

Since the assumption that correlations are modulated by at-
tention holds, identifying the attended video segment based on
these correlations appears to be feasible. To evaluate how well
the attended video segment can be decoded from the data, we
perform the SVAD task on the superimposed-object dataset as
described in Section II-F and estimate the decoding accuracy
using bootstrapping. Specifically, in each cross-validation fold,
30-second test segments are randomly sampled V;/3 times,
where V; is the length of the test set in seconds. The number
of test segments is approximately 110 per fold on average.
Over each 30s test segment, we compute the correlation be-
tween the tested modality and the ObjFlow feature of both the
attended and unattended object, and select the one exhibiting
the highest correlation. The decoding accuracy is calculated as
the proportion of times the attended video segment is correctly
identified.

The results are shown in Fig. 4. Among the tested modalities,
FEG, GAZE_V, and SACC stand out with higher decod-
ing accuracies, with approximately 75% of subjects reaching
60% accuracy or higher, and medians around 63.0%, 67.1%,
and 64.8%, respectively. There is no significant difference in
performance when comparing these three modalities.

Although the main focus of this study is EEG-based SVAD, it
is noteworthy that this decoding can be achieved at least equally
well using the gaze velocity or saccade information obtained
from an eye tracker. The good performance of gaze velocity and
saccade indicates that specific eye movement patterns elicited
by the video stimuli can be informative for SVAD, even when
the objects are spatially overlapping. The superior performance
of gaze velocity amplitude over original gaze coordinates may
be attributed to the fact that the ObjFlow feature is also based
on (pixel) velocity magnitude.
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The correlations of each data modality with the ObjFlow features of the attended and unattended object in the superimposed-object dataset

are shown in blue and orange, respectively. “CC 1” and “CC 2” denote the first and second canonical components. The dots represent the mean
correlations of individual subjects across folds. The boxes indicate the median and the interquartile range, while the whiskers extend to the most
extreme data points not considered outliers. The dashed lines represent the significance level pooled across subjects and components.

Accuracy (%)
(o)}
o

50 - °
e
]
40- T T T T .l T
EEG EOG GAZE  GAZEV  EOG.V SACC
Modality
Fig. 4. Accuracies of the SVAD task, i.e., identifying the attended

video segment from the unattended video segment using data seg-
ments from different modalities. The models are trained and tested on
the superimposed-object dataset and the test segments are 30s long.
The dots in different colors represent the accuracies of individual sub-
jects. The boxes show the median and the interquartile range, with the
whiskers extending to the most extreme data points. Wilcoxon signed-
rank tests are performed to determine if the distributions are significantly
different, and the p-values are indicated on the figure (BH-adjusted). The
significance levels are indicated by the dashed lines.

C. EEG-Based Decoding is Not Dominantly Driven by
Eye Movement Artefacts

In Fig. 4, we notice that EEG does not outperform gaze
velocity and saccades, which raises an important question: does
EEG-based decoding primarily rely on eye movement artefacts
in the EEG recordings? For some use cases, it may not be
necessary to disentangle the effects of eye movements, as the
primary goal is high decoding accuracy. However, since we also
aim to enable novel experimental paradigms in neuroscience,
where the focus is on neural responses, it is crucial to under-
stand the role of eye movements in EEG-based decoding under
free-viewing conditions. In this section, we suppress the effects

of eye movement artefacts in the EEG (including saccades) in
three ways: by regressing out eye movements (Section III-C1),
by using only EEG channels in the visual cortex (Section III-C2),
and by analyzing data free from saccades (Section III-C3).
The decoding accuracies are recomputed on the superimposed-
object dataset under these three cases, collectively suggest-
ing that EEG-based decoding is largely independent of eye
movements.

1) Visual Attention is Decodable After Regressing Out Eye
Movements: To control for the effects of eye movements, we
apply PCCA (Section II-E2) to correlate EEG signals with
video features, setting the EOG and gaze velocity as confounds.
More specifically, EOG and gaze velocity are concatenated
along the channel axis and regressed out from both the EEG
signals and the attended/unattended video features as in (6).
CCA is then applied to the residuals to find the canonical
components. Note that saccade information, which is encoded
in gaze velocity as sudden changes in coordinates leading to
peaks in velocity (Section II-C), is also implicitly suppressed
after regression. The accuracies before and after controlling
for eye movements are shown in Fig. 5. Although decoding
performance declines significantly after regression (p-value =
0.049), most subjects exhibit modest changes, with average
accuracy decreasing slightly from 62.7% to 61.6%. Furthermore,
in subjects with significant decoding accuracy, this significance
persists even after regressing out gaze information. This result
suggests that while eye movement information in EEG can assist
SVAD, it does not primarily drive the decoding performance.

However, a limitation of the above analysis is that the “eye
movement information” considered here includes only EOG and
gaze velocity, and not all information related to eye movements.
For instance, there could be other nonlinear transformations of
the gaze coordinates that correlate with visual stimuli and EEG
signals, thereby boosting the decoding performance. Another
way to disentangle or reduce the influence of eye movements is
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Fig. 5. Accuracies of the SVAD task before and after regressing
out EOG and gaze velocity from EEG. The latter is denoted by
“EEG-EOG&GAZE_V'. The models are trained and tested on the
superimposed-object dataset and the test segments are 30s long. The
dots denote the individual (per-subject) accuracies, and the results of
the same subject are connected with a line. The significance levels are
indicated by the dashed lines.

to use EEG channels that are less affected by eye movements,
which is discussed in the next section.

2) Visual Attention is Decodable Using Channels in Visual
Cortex: It is known that eye movements primarily affect EEG
channels in the frontal region, with the strength of these artefacts
decreasing as they propagate towards the back of the head [39].
Therefore, if EEG-based decoding is mainly driven by eye
movements, the decoding performance when using channels in
the frontal region should be better compared to other regions,
especially the parietal-occipital region, where the visual cortex
is located, being the furthest away from the eyes. To test this
hypothesis, we divide EEG channels into different groups based
on their locations (Fig. 6(a)), and perform the SVAD task using
each group. The results are presented in Fig. 6(b). Contrary
to the hypothesis, the decoding accuracy using channels in the
parietal-occipital region is comparable to the performance using
whole-brain signals, whereas accuracy gradually declines in
regions closer to the eyes. This result suggests that EEG-based
decoding is primarily driven by neural responses in the visual
cortex rather than eye movements.

3) Visual Attention is Decodable After Removing Saccades:
Saccades also elicit neural responses, which have been found to
be dominant across the entire brain under a free-viewing setup
similar to ours [27]. As mentioned in Section III-C1, the effect
of saccades is suppressed after regressing out EOG and gaze
velocity from EEG and video features. However, a safer option
is to remove the data segments around saccades and analyze

the remaining data, as regression might not fully eliminate the
event-related potentials elicited by saccades.

In our experiment, we remove data points from 0.33 s before
to 1s after the saccade onset, resulting in a data loss ranging
from 23% to 82%, depending on the subject. To ensure suffi-
cient data for training and testing, we train the CCA decoders
on the single-object dataset in a subject-independent manner
(i.e. concatenating the data from all subjects) and test on the
superimposed-object dataset for individual subjects. For a fair
comparison, we create control groups by randomly removing the
same amount of data not necessarily around saccades. Wilcoxon
signed-rank tests are performed to determine if the performance
after removing data around saccades is significantly worse than
the control groups. The BH-adjusted p-values are all above 0.05
(0.276, 0.410, 0.252, 0.225, 0.225, 0.252, 0.414, 0.225, 0.225,
0.225), indicating no strong evidence that EEG-based decoding
is primarily driven by saccades.

D. EEG May Also Capture Information of the
Unattended Object

In Section III-A, we observe that the correlations with the
unattended object are not only lower but also non-significant
for all data modalities. This is remarkable, especially for EEG,
since the unattended object is present in the same location in
the visual field as the attended object. This suggests that the
brain is able to separate the visual streams of both objects and
suppress one of them in favor of the other. Since the correlation
with the unattended object is not significant, the question re-
mains whether the EEG actually contains signal components
that encode the unattended object and whether these can be
captured by the CCA model. To address this question, we
conduct the match-mismatch (MM) task (Section II-F), where
the attended video segment remains the same as in SVAD,
and the unattended video segment is an unobserved segment
at a random time point in the same test set. We apply the
same bootstrapping and cross-validation procedure, with video
segment lengths still set to 30 s, and compare the decoding accu-
racies of the SVAD and MM tasks on the superimposed-object
dataset.

The results are shown in Fig. 7(a). Both before and after
regressing out eye movements, the EEG-based decoding ac-
curacies of the MM task are significantly higher than those
of the SVAD task, despite the overall difference being small.
This indicates that EEG may capture information about the
unattended video, which confuses the SVAD decision. Further
evidence is provided by the results in Fig. 7(b), which show the
sum of the first two canonical correlations between EEG (with or
without eye movement regressed out) and the ObjFlow feature of
the attended, unattended, and mismatch object. The significant
difference between the correlations with the unattended object
versus the mismatch object implies that the model also extracts
responses correlated with the unattended object. Note that for
eye-related data modalities, the performance of the MM task
is comparable to or even worse than that of the SVAD task,
suggesting that the unattended object is hardly captured by these
modalities (Supplementary Material [40], Section I).
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regions. The models are trained and tested on the superimposed-object dataset and the test segments are 30s long. The dots denote the individual
(per-subject) accuracies, and the boxes show the median and the interquartile range. Wilcoxon signed-rank tests are performed to determine if
using whole-brain signals is significantly better than using signals from a specific region. The p-values are BH-adjusted. The significance levels are

indicated by the dashed lines.
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(a) Accuracies of the SVAD and MM tasks. Wilcoxon signed-rank tests are performed to determine if the accuracies of SVAD tasks are

significantly lower than those of the MM tasks using EEG. The p-values are BH-adjusted. The significance levels are indicated by the dashed lines.
(b) The sum of first two canonical correlations between each modality and the ObjFlow feature of the attended object (in blue), the unattended object
(in orange) and the mismatch object (in green). The models are trained and tested on the superimposed-object dataset and the test segments are
30s long. The dots denote the per-subject results averaged across all trials, and the boxes show the median and the interquartile range. The

significance levels are indicated by the dashed lines.

E. Complementary Information Exists in EEG and Gaze
Features

In Section III-C1, we have demonstrated that regressing out
gaze velocity (and EOG) from EEG signals does not drasti-
cally affect decoding performance. Therefore, it is reasonable
to assume that these two data modalities capture complemen-
tary information. This raises a natural question: can combining
them improve decoding performance? The combination can be
achieved by simply concatenating gaze velocity to EEG signals
as an extra channel. We then apply the decoding pipeline to the
combined data and compare the performance with using EEG
and gaze velocity separately. The accuracies of the two tasks on
the superimposed-object dataset using EEG, gaze velocity, and
their combination are shown in Fig. 8.

In the SVAD task, using combined modalities significantly
outperforms using EEG alone but not gaze velocity alone, with

a median accuracy around 68.8%. In the MM task, the perfor-
mance of using combined modalities is significantly higher than
using each of them separately, with a median accuracy around
70.9%. These results suggest that the information captured by
EEG and gaze velocity is complementary and can lead to better
decoding performance, especially in the MM task. However, for
the SVAD task, the additional information from EEG may not be
as discriminative as the information in gaze velocity (as already
explained in Section III-D), leading to limited improvement.

F. Synchronization Among Subjects Decreases in the
Presence of a Distractor

In the previous sections, we have focused on stimulus-aware
individual-level analysis, correlating video features with data
modalities and identifying the attended video segment. Now,
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Fig. 8. Accuracies of the SVAD and MM tasks using EEG, gaze ve-

locity, and their combination. The models are trained and tested on the
superimposed-object dataset and the test segments are 30s long. The
dots denote the individual (per-subject) accuracies, and the boxes show
the median and the interquartile range. Wilcoxon signed-rank tests are
performed to determine if the accuracies of using EEG and gaze velocity
separately are significantly lower than that of using them together. The
p-values are BH-adjusted. The significance levels are indicated by the
dashed lines.

we shift our focus to group-level analysis, which bypasses
video feature extraction, quantifies the synchronization level
among participants, and provides insights into group attention
or engagement [35], [36], [41]. Specifically, we apply GCCA
(Section II-E3) to each data modality and compute the inter-
subject correlation (ISC) for the first canonical component for
both datasets: single-object and superimposed-object. The ISCs
are cross-validated using a leave-one-pair-out scheme.

The results for each fold are presented in Fig. 9,! from which
we can observe that the ISCs of EEG (with eye movements
regressed out) are significantly lower in the superimposed-object
dataset. A decreasing trend in ISCs is also evident for the other
modalities, although this decrease is not statistically significant,
potentially due to the limited sample size. This indicates that
synchronization among subjects decreases when a distractor is
present. A possible explanation is that subjects may be distracted
by the unattended object and this distraction can happen at dif-
ferent points in time for different subjects, leading to a reduced
synchronicity. This poses a challenge for stimulus-unaware
ISC-based measurements of attention when viewing naturalistic
videos: the attention of the participants is more scattered in the
presence of multiple objects, and lower ISCs do not necessarily
imply lower absolute attention levels to the overall stimuli.
For example, in a tennis match recording, participants might
focus on different players at different times, resulting in lower
ISCs even if their attention levels are high. Another interesting
observation is that despite the high synchronization of EOG and
gaze coordinates across subjects, they do not perform well in the
SVAD and MM tasks (Fig. 7(a)), whose performance depends
more on the correlation between the data and the extracted video
features.

Note that ISCs should not be compared across modalities as they heavily
depend on the spectral characteristics and signal-to-noise ratio of the underlying
signals.

IV. DISCUSSION
A. Is the Ground Truth Reliable?

In this study, we have assumed that participants always follow
the instruction, and we use the object they are asked to attend
to as the ground truth in the SVAD task. Although this may not
always be the case, we expect the ground truth to remain reliable
assuming participants only occasionally attend to the distractor.

Additional evidence for this assumption can be found in
Fig. 10. Here, we repeat the analysis described in Section III-B
for the best three modalities where the CCA decoders are this
time trained on the single-object dataset, for which the ground
truth is certain due to the absence of a distracting object. From
Fig. 10, we conclude that the impact is relatively mild; for the
GAZE_V and SACC modalities the difference is not signifi-
cant, and in the case of EFG, training with the single-object
data actually leads to significantly worse results, despite the
availability of an exact ground truth. In this case, training with
superimposed objects results in higher accuracies, which would
be unlikely if the ground truth in this data set would be unreliable.

The decrease in performance when training the decoders on
the single-object data in the case of EEG might be explained
by the fact that the decoder can not learn to suppress neural
responses to the unattended object, as these responses are not
present in the training set. Another possible explanation is the
fact that the task of attending to a target object in the superim-
posed videos is more challenging, which could result in stronger
neural responses, which are more easily decodable. A similar
effect has been described in the context of selective attention
decoding with speech stimuli, where more difficult tasks, i.e.,
in more challenging acoustic conditions, can result in better
decoding accuracies [42], [43].

B. Eye Tracker or EEG

In selective visual attention decoding, eye trackers are perhaps
a more straightforward and popular choice. Their advantage
in overt attention decoding is evident as they directly provide
gaze information with high spatial and temporal resolution.
Therefore, gaze maps exported from eye trackers are usually
considered the ground truth for attention in many fields such as
video saliency prediction [44], neuromarketing [45], and cog-
nitive workload measurement [46]. Additionally, eye trackers
have been found useful in quantifying the absolute attention
level. For example, in [41], ISCs of gaze and pupil size were
used as markers of attention and were predictive of students’
test scores on a group-level.

A limitation of eye trackers is that they cannot measure covert
attention, which can be problematic when participants attend
to objects in their peripheral vision without moving their eyes.
However, this is less of a concern in free-viewing scenarios
where overt attention is more prevalent. Eye trackers may also
struggle when objects are close to eac\h other, as the gaze
coordinates might be ambiguous. Nevertheless, in this study
we demonstrated that gaze velocity and saccades can still be
informative even when objects are spatially overlapped, as long
as the objects have distinct motion patterns.
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Inter-subject correlations (ISCs) of the first canonical component across different data modalities for the single-object dataset (blue) and

the superimposed-object dataset (orange). The ISCs for EOG and GAZE are plotted separately because their correlation values are much higher
due to their particular signal characteristics, i.e., they are much lower in frequency and are approximately piecewise constant. Each dot represents
the ISC for an individual fold, and the boxes display the median and interquartile range. Wilcoxon signed-rank tests are performed to assess
whether ISCs in the single-object dataset are significantly higher than those in the superimposed-object dataset, with p-values adjusted using the

BH procedure.

p = 0.003 p = 0.515 p=0.27
80 4 M
751
olo
.
704 ° o o
. B
g )
R 654 % "
g S s o )
5 60 u - - 18
g L] &
g .

v
v
L

501 .
45 [0 Train with superimposed objects
[ Train with single object
404 T T r
EEG GAZE_V SACC
Modality
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superimposed-object dataset (in blue) and the single-object dataset (in
orange). The test segments are 30 s long. The dots denote the individual
(per-subject) accuracies, and the boxes show the median and the in-
terquartile range. Two-sided Wilcoxon signed-rank tests are performed
and the p-values are BH-adjusted. The significance levels are indicated
by the dashed lines.

Another limitation of eye trackers in the context of (selective)
attention decoding is that eye movements are an indirect measure
of attention since there is a gap between merely “looking at”
and “paying attention”, whereas EEG directly captures neural
responses to stimuli, allowing for arguably more reliable in-
ference of attention, independent of gaze patterns. This could
be particularly useful when one aims to decode not only the
attended object but also how attentive the participant is to the
object. Take the results of Subject 11 and 17 (Table II) as an
example: the gaze velocity-based decoding accuracy is compa-
rable for both subjects, but the EEG-based decoding accuracy
(with eye movements regressed out) is 8% lower for Subject 11.
Additionally, the EEG signals of Subject 11 exhibit higher corre-
lations with the unattended object. This suggests that Subject 11

TABLE Il
COMPARISON OF ACCURACIES BETWEEN GAZE VELOCITY-BASED AND
EEG-BASED DECODING (WITH EYE MOVEMENTS REGRESSED OUT) IN THE
SVAD TASK ON THE SUPERIMPOSED-OBJECT DATASET FOR TWO
SELECTED SUBJECTS

Subject Accuracy (SVAD, %) Correlation
ID Gaze Velocity- EEG-Based EEG-Att EEG-Unatt
Based
11 67.4 60.2 0.058 0.041
17 69.3 68.0 0.097 0.011

The sum of the first two canonical correlations between EEG and attended video features, and EEG
and unattended video features are also shown.

may track the attended object similarly to Subject 17 but is less
successful in suppressing the distractor that spatially overlaps
with the target object. Together with the fact that the correlation
between EEG and the attended object is also lower for Subject
11, this indicates that Subject 11 might be less attentive overall
than Subject 17.

Neural-based decoding can also be advantageous for un-
derstanding the underlying neural mechanisms of selective at-
tention, such as the timing of attentional effects and sources
of attentional control signals [14], [16], [47], although EEG-
based paradigms are not yet prevalent. While current decoding
accuracies may not yet meet the requirements for real-world
applications, they can be improved by reducing the time resolu-
tion (i.e. use longer test windows) or incorporating evidence-
accumulation techniques such as hidden Markov models or
state-space models, as sometimes used in speech decoding [48],
[49], [50].

C. Gaze-Informed Attention Decoding

In Section III-E, we have combined EEG and gaze velocity
by concatenating them along the channel axis. Another way
to incorporate gaze information is during video feature extrac-
tion, by weighting or selecting video features based on gaze
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coordinates. The goal is then not only to identify the attended
object but also to measure the absolute attention level to the
object in the gaze direction. This approach is motivated by the
selective attention mechanism: we assume participants direct
their gaze to the object of interest in free-viewing scenarios, and
features around the gaze coordinates should be emphasized to
find strong correlations with EEG signals, as attended features
are enhanced in the brain. This is particularly useful when mul-
tiple objects are interacting in the scene and each participant’s
attention is unknown beforehand. A region defined based on the
gaze map could potentially replace the bounding boxes of objects
in the object-based features proposed in [17], circumventing the
need for feature fusion in multi-object scenarios.

D. Gaze-Driven EEG Components Versus
Stimulus-Driven Neural Responses

Returning to the proposed EEG-based decoder, although the
analysis in Section ITI-C shows that the decoding performance is
unlikely to be driven by eye movements, we cannot make defini-
tive arguments as not all confounds are completely removed.
Methods of eye movement artifact removal, such as the linear
regression in our PCCA procedure, only suppress the artefacts
without necessarily fully eliminating them, and the residuals
might still affect decoding performance. Analyzing only EEG
channels in the occipital-parietal region also mitigates ocular
contamination, but neural responses elicited by saccades are
still present in that region [27]. Cutting out segments around
saccades appears to be a reliable way of obtaining “clean” data,
but the resulting discontinuities in the signals might introduce
new confounds. Additionally, it is difficult to disentangle the
EEG signals related to the motor control of eye movements.

In essence, eye movement is a complex process that in-
volves multiple brain regions and is closely linked to attention.
Consequently, it is not feasible to fully disentangle all related
confounds. While the results of this study suggest that EEG-
based decoding is not dominantly driven by eye movements, we
acknowledge that, depending on the research question and appli-
cation area, gaze fixation may be necessary to better disentangle
the effects of eye movements from EEG signals, as opposed to
the free-viewing paradigm that was used in this study.

V. CONCLUSION

In this study, we propose an experimental protocol for se-
lective visual attention decoding that better approximates real-
world conditions—though not fully replicating them—by in-
troducing naturalistic videos over synthetic or static images,
allowing free-viewing rather than enforcing gaze fixation, and
utilizing EEG instead of fMRI. We demonstrate that it is possible
to decode the attended object from EEG signals, even when
using only visual cortex channels and when the two objects
are co-located, thereby ruling out position-based confounds. We
provided supporting empirical evidence that the neural tracking
of naturalistic motion is modulated by selective attention. Apart
from EEG, eye gaze data have also been used to decode attention.
Although the attended and unattended objects are superimposed,
the target is still decodable from gaze data since the gaze velocity

and saccades are related to the movement pattern of the attended
object.

To better understand the role of eye movements in EEG-based
decoding, we have conducted a series of experiments to disentan-
gle possible eye gaze confounds in the EEG signals. The results
indicate that EEG-based decoding is not dominantly driven by
eye movements. We have also demonstrated that EEG likely
captures information about both the attended and unattended
objects, which makes the EEG-based decoder less discrimina-
tive. This finding may explain why adding EEG to gaze data
does not significantly improve SVAD performance, despite the
existence of complementary information. Furthermore, group-
level analysis reveals that the participants’ attention is more
scattered when a distractor is present, making stimulus-unaware
group-level attention metrics such as ISC less reliable with
increased stimulus complexity.

As afirst study of selective visual attention decoding in natural
videos using EEG, it takes the middle ground between experi-
mental control and ecological validity. Future work could pro-
ceed in two directions. First, a more controlled approach could
replicate this experiment with fixed gaze protocols to fully iso-
late ocular activities. Alternatively, a more application-focused
direction could go for more ecological setups, identifying more
relevant video features, developing more sophisticated models,
or integrating gaze-informed decoding strategies to improve
performance.

ACKNOWLEDGMENT

Views and opinions expressed are however those of the au-
thor(s) only and do not necessarily reflect those of the European
Union or the granting authorities. Neither the European Union
nor the granting authorities can be held responsible for them.

REFERENCES

[1] M. Carrasco, “Visual attention: The past 25 years,” Vis. Res., vol. 51,no. 13,
pp. 1484-1525,2011.

[2] S.P.Kelly,E.C.Lalor, C.Finucane, G. McDarby, and R. B. Reilly, “Visual
spatial attention control in an independent brain-computer interface,” [EEE
Trans. Biomed. Eng., vol. 52, no. 9, pp. 1588-1596, Sep. 2005.

[3] C.Reichert, I. F. T. Ceja, C. M. Sweeney-Reed, H. -J. Heinze, H. Hinrichs,
and S. Diirschmid, “Impact of stimulus features on the performance
of a gaze-independent brain-computer interface based on covert spatial
attention shifts,” Front. Neurosci., vol. 14, 2020, Art. no. 591777.

[4] D. Li et al., “Information-based multivariate decoding reveals imprecise
neural encoding in children with attention deficit hyperactivity disorder
during visual selective attention,” Hum. Brain Mapping, vol. 44, no. 3,
pp- 937-947, 2023.

[S] R. Abiri, S. Borhani, Y. Jiang, and X. Zhao, “Decoding attentional state
to faces and scenes using EEG brainwaves,” Complexity, vol. 2019, no. 1,
2019, Art. no. 6862031.

[6] M.M.Monti,J.D.Pickard, and A. M. Owen, “Visual cognition in disorders
of consciousness: From V1 to top-down attention,” Hum. Brain Mapping,
vol. 34, no. 6, pp. 1245-1253, 2013.

[7] E. Astrand, C. Wardak, and S. B. Hamed, “Selective visual attention to
drive cognitive brain—machine interfaces: From concepts to neurofeedback
and rehabilitation applications,” Front. Syst. Neurosci., vol. 8, Aug. 2014,
Art. no. 144, doi: 10.3389/fnsys.2014.00144.

[8] M. T. Debettencourt, J. D. Cohen, R. F. Lee, K. A. Norman, and N. B.
Turk-Browne, “Closed-loop training of attention with real-time brain
imaging,” Nature Neurosci., vol. 18, no. 3, pp. 470-475, 2015.

[9] C. Ozcinar, J. Cabrera, and A. Smolic, “Visual attention-aware omnidirec-
tional video streaming using optimal tiles for virtual reality,” IEEE Trans.
Emerg. Sel. Topics Circuits Syst., vol. 9, no. 1, pp. 217-230, Mar. 2019.

Authorized licensed use limited to: KU Leuven University Library. Downloaded on February 17,2026 at 10:51:18 UTC from |IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.3389/fnsys.2014.00144

YAO et al.: EEG-BASED DECODING OF SELECTIVE VISUAL ATTENTION IN SUPERIMPOSED VIDEOS

7261

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

J. Moran and R. Desimone, “Selective attention gates visual processing in
the extrastriate cortex,” Science, vol. 229, no. 4715, pp. 782-784, 1985.
S. Yantis and J. T. Serences, “Cortical mechanisms of space-based and
object-based attentional control,” Curr. Opin. Neurobiol., vol. 13, no. 2,
pp. 187-193, 2003.

F. Tong and M. S. Pratte, “Decoding patterns of human brain activity,”
Annu. Rev. Psychol., vol. 63, pp. 483-509, 2012.

A. M. Niazi et al., “Online decoding of object-based attention using real-
time fMRI,” Eur. J. Neurosci., vol. 39, no. 2, pp. 319-329, 2014.

A. S. Keller, A. V. Jagadeesh, L. Bugatus, L. M. Williams, and K.
Grill-Spector, “Attention enhances category representations across the
brain with strengthened residual correlations to ventral temporal cortex,”
Neurolmage, vol. 249, Apr. 2022, Art. no. 118900.

T. Horikawa and Y. Kamitani, “Attention modulates neural representation
to render reconstructions according to subjective appearance,” Commun.
Biol., vol. 5, no. 1, pp. 1-12, Jan. 2022.

T. Grootswagers, A. K. Robinson, S. M. Shatek, and T. A. Carlson, “The
neural dynamics underlying prioritisation of task-relevant information,”
Neurons, Behav., Data Anal., Theory, vol. 5, no. 1, pp. 1-17, Feb. 2021.
Y. Yao, A. Stebner, T. Tuytelaars, S. Geirnaert, and A. Bertrand, “Identi-
fying temporal correlations between natural single-shot videos and EEG
signals,” J. Neural Eng., vol. 21, no. 1, 2024, Art. no. 016018.

M. Gavaret, A. Iftimovici, and E. Pruvost-Robieux, “EEG: Current rele-
vance and promising quantitative analyses,” Revue Neurologique, vol. 179,
no. 4, pp. 352-360, 2023.

N.Jamil, A. N. Belkacem, S. Ouhbi, and C. Guger, “Cognitive and affective
brain—computer interfaces for improving learning strategies and enhancing
student capabilities: A systematic literature review,” I[EEE Access, vol. 9,
pp. 134122-134147, 2021.

H. Si-Mohammed et al., “Towards BCI-based interfaces for augmented
reality: Feasibility, design and evaluation,” IEEE Trans. Vis. Comput.
Graph., vol. 26, no. 3, pp. 1608-1621, Mar. 2020.

R. Li et al., “The perils and pitfalls of block design for EEG classification
experiments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1,
pp. 316-333, Jan. 2021.

I. Rotaru, S. Geirnaert, N. Heintz, I. Van de Ryck, A. Bertrand, and T.
Francart, “What are we really decoding? Unveiling biases in EEG-based
decoding of the spatial focus of auditory attention,” J. Neural Eng., vol. 21,
no. 1, 2024, Art. no. 016017.

W. Biesmans, N. Das, T. Francart, and A. Bertrand, “Auditory-inspired
speech envelope extraction methods for improved EEG-Based auditory
attention detection in a cocktail party scenario,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 25, no. 5, pp. 402-412, May 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/7478117/

S. Geirnaert et al., “Electroencephalography-based auditory attention
decoding: Toward neurosteered hearing devices,” IEEE Signal Process.
Mag., vol. 38, no. 4, pp. 89-102, Jul. 2021. [Online]. Available: https:
/lieeexplore.ieee.org/document/9467380/

C. Puffay etal., “Relating EEG to continuous speech using deep neural net-
works: A review,” J. Neural Eng., vol. 20,2023, Art. no. 041003. [Online].
Available: http://iopscience.iop.org/article/10.1088/1741-2552/ace73f
A. Herbec, J. -P. Kauppi, C. Jola, J. Tohka, and F. E. Pollick, “Differences
in fMRI intersubject correlation while viewing unedited and edited videos
of dance performance,” Cortex, vol. 71, pp. 341-348, Oct. 2015.

M. Nentwich et al., “Semantic novelty modulates neural responses to
visual change across the human brain,” Nature Commun., vol. 14, no. 1,
2023, Art. no. 2910.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 386—397, Feb. 2020.
G. Farnebick, “Two-frame motion estimation based on polynomial expan-
sion,” in Image Analysis, G. Goos, J. Hartmanis, J. V. Leeuwen, J. Bigun,
and T. Gustavsson, Eds., Berlin, Heidelberg: Springer, 2003, vol. 2749,
pp- 363-370.

H. Hotelling, “Relations between two sets of variates,” in Breakthroughs in
Statistics: Methodology and Distribution. New York, NY, USA: Springer,
1992, pp. 162-190.

[31]

(32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

E. B. Corrochano, T. De Bie, N. Cristianini, and R. Rosipal, “Eigen-
problems in pattern recognition,” in Proc. Handbook Geometric Comput.:
Appl. Pattern Recognit., Comput. Vis., Neuralcomputing, Robot., 2005,
pp. 129-167.

B. R. Rao, “Partial canonical correlations,” Trabajos de estadistica y de
investigacion operativa, vol. 20, pp. 211-219, 1969.

J. R. Kettenring, “Canonical analysis of several sets of variables,”
Biometrika, vol. 58, no. 3, pp. 433-451, 1971.

X. Fu et al., “Efficient and distributed algorithms for large-scale general-
ized canonical correlations analysis,” in Proc. IEEE 16th Int. Conf. Data
Mining, 2016, pp. 871-876.

S. Geirnaert, Y. Yao, T. Francart, and A. Bertrand, “Stimulus-informed
generalized canonical correlation analysis for group analysis of neural
responses to natural stimuli,” /EEE J. Biomed. Health Inform., vol. 29,
no. 2, pp. 970-983, Feb. 2025.

J. P. Dmochowski, P. Sajda, J. Dias, and L. C. Parra, “Correlated com-
ponents of ongoing EEG point to emotionally laden attention—A possible
marker of engagement?,” Front. Hum. Neurosci., vol. 6,2012, Art. no. 112,
doi: 10.3389/fnhum.2012.00112.

D. Prichard and J. Theiler, “Generating surrogate data for time series with
several simultaneously measured variables,” Phys. Rev. Lett., vol. 73,n0.7,
pp- 951-954, 1994.

Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in
multiple testing under dependency,” Ann. Statist., vol. 29, pp. 1165-1188,
2001.

S. Romero, M. A. Mafianas, and M. J. Barbanoj, “A comparative study
of automatic techniques for ocular artifact reduction in spontaneous EEG
signals based on clinical target variables: A simulation case,” Comput.
Biol. Med., vol. 38, no. 3, pp. 348-360, 2008.

Y. Yao, W. De Swaef, S. Geirnaert, and A. Bertrand, “EEG-based decod-
ing of selective visual attention in superimposed videos: Supplementary
material,” Zenodo, Apr. 15, 2025, doi: 10.5281/zenodo.15211457.

J. Madsen, S. U. Jilio, P. J. Gucik, R. Steinberg, and L. C. Parra, “Syn-
chronized eye movements predict test scores in online video education,”
Proc. Nat. Acad. Sci., vol. 118, no. 5, 2021, Art. no. €2016980118.

N. Das, W. Biesmans, A. Bertrand, and T. Francart, “The effect of
head-related filtering and ear-specific decoding bias on auditory attention
detection,” J. Neural Eng., vol. 13, no. 5, 2016, Art. no. 056014.

N. Das, A. Bertrand, and T. Francart, “EEG-based auditory attention de-
tection: Boundary conditions for background noise and speaker positions,”
J. Neural Eng., vol. 15, no. 6, 2018, Art. no. 066017.

L. Jiang, M. Xu, T. Liu, M. Qiao, and Z. Wang, “DeepVS: A deep learning
based video saliency prediction approach,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 602-617.

R. d. O. J. d. Santos, J. H. C. de Oliveira, J. B. Rocha, and J. d. M. E.
Giraldi, “Eye tracking in neuromarketing: A research agenda for marketing
studies,” Int. J. Psychol. Stud., vol. 7, no. 1, pp. 3242, 2015.

J. Zagermann, U. Pfeil, and H. Reiterer, “Measuring cognitive load us-
ing eye tracking technology in visual computing,” in Proc. 6th Work-
shop Beyond Time Errors Novel Eval. Methods Visualization, 2016,
pp. 78-85.

E. Goddard, T. A. Carlson, and A. Woolgar, “Spatial and feature-selective
attention have distinct, interacting effects on population-level tuning,” J.
Cogn. Neurosci., vol. 34, no. 2, pp. 290-312, 2022.

S. Geirnaert, T. Francart, and A. Bertrand, “An interpretable performance
metric for auditory attention decoding algorithms in a context of neuro-
steered gain control,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28,
no. 1, pp. 307-317, Jan. 2020.

A. Aroudi, T. De Taillez, and S. Doclo, “Improving auditory attention
decoding performance of linear and non-linear methods using state-space
model,” in Proc. ICASSP 2020 IEEE Int. Conf. Acoust., Speech Signal
Process., 2020, pp. 8703-8707.

N. Heintz, S. Geirnaert, I. V. de Ryck, T. Francart, and A. Bertrand,
“Probabilistic gain control in a multi-speaker setting using EEG-based
auditory attention decoding,” in Proc. 32nd Eur. Signal Process. Conf.,
2024, pp. 892-896.

Authorized licensed use limited to: KU Leuven University Library. Downloaded on February 17,2026 at 10:51:18 UTC from |IEEE Xplore. Restrictions apply.


https://ieeexplore.ieee.org/document/7478117/
https://ieeexplore.ieee.org/document/9467380/
https://ieeexplore.ieee.org/document/9467380/
http://iopscience.iop.org/article/10.1088/1741-2552/ace73f
https://dx.doi.org/10.3389/fnhum.2012.00112
https://dx.doi.org/10.5281/zenodo.15211457


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


