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Abstract— It is well known that electroencephalograms
(EEGs) often contain artifacts due to muscle activity, eye
blinks, and various other causes. Detecting such artifacts
is an essential first step toward a correct interpretation of
EEGs. Although much effort has been devoted to semi-
automated and automated artifact detection in EEG, the
problem of artifact detection remains challenging. In this
paper, we propose a convolutional neural network (CNN)
enhanced by transformers using belief matching (BM) loss
for automated detection of five types of artifacts: chewing,
electrode pop, eye movement, muscle, and shiver. Specifically,
we apply these five detectors at individual EEG channels to
distinguish artifacts from background EEG. Next, for each of
these five types of artifacts, we combine the output of these
channel-wise detectors to detect artifacts in multi-channel
EEG segments. These segment-level classifiers can detect
specific artifacts with a balanced accuracy (BAC) of 0.947,
0.735, 0.826, 0.857, and 0.655 for chewing, electrode pop, eye
movement, muscle, and shiver artifacts, respectively. Finally,
we combine the outputs of the five segment-level detectors
to perform a combined binary classification (any artifact
vs. background). The resulting detector achieves a sensitivity
(SEN) of 42.0%, 32.0%, and 13.3%, at a specificity (SPE)
of 95%, 97%, and 99%, respectively. This artifact detection
module can reject artifact segments while only removing a
small fraction of the background EEG, leading to a cleaner
EEG for further analysis.

I. INTRODUCTION
Electroencephalography (EEG) is a widely used tech-

nology in neurology, e.g., helpful for the diagnosis of
epilepsy [1]. However, EEG recordings often contain
artifacts, which can be due to eyeblinks, head move-
ments, chewing, interference from electronic equipment,
and other causes [2]. These artifacts may resemble
epileptiform abnormalities or other transient waveforms,
resulting in mistakes during annotation [3]. Knowledge
of the plausible scalp distribution of EEG abnormalities
is essential to distinguish artifacts from brain waves [4].
For instance, muscle artifacts usually appear in multiple
channels, whereas artifacts such as electrode pop may
only be visible in a single channel.

When reading EEGs, one must distinguish artifacts
from brain waves. An automatic artifact detection
system can improve the readability of an EEG [2].
Common artifact rejection and detection methods in-
cludes high amplitude rejection [5], common average
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(a) Background. (b) Chewing.

(c) Electrode pop. (d) Eye movement.

(e) Muscle. (f) Shiver.

Fig. 1. Examples of clean EEG and EEG with various types of
artifacts.

referencing (CAR) [6], independent component analysis
(ICA) [4], [3], wavelet transforms (WT) [4], machine
learning [7], convolutional neural networks (CNN) [8],
[3], and generative adversarial networks (GAN) [3]. The
majority of the studies are not validated on large datasets
(more than 100 patients), but instead on small datasets
(less than 100 patients) or semi-simulated datasets [4],
[8] by injecting noise into regular EEGs. Additionally,
most studies detect artifacts directly from multi-channel
segments [7]; as a result, many of those methods are
only applicable to a fixed number of channels, whereas
the proposed method can be applied to EEG with
any number of channels. Ultimately, most studies failed
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Fig. 2. Channel-level and segment-level analysis of EEG.

TABLE I
Summary of the TUH ART EEG dataset.

Background/Artifacts Duration (hr) Number of Events
Background 62.533 -
Chewing 0.995 804

Electrode Pop 5.554 6090
Eye Movement 8.04 9480

Muscle 16.303 11267
Shiver 0.047 31

to deploy proper evaluation metrics to measure the
effectiveness of their methods [5], [6]. Consequently, it is
challenging to compare the existing artifact detectors.

In this paper, we propose a CNN equipped with a
transformer (CNN-Transformer) trained through a belief
matching loss (BM) to detect five different types of
artifacts (see Figure 1) from the TUH Artifact (TUH-
ART) dataset. The proposed system detects artifacts in
individual EEG channels and also in multi-channel EEG
segments (see Figure 2) [9]. The artifact detector can
detect specific artifacts at segment-level with a balanced
accuracy (BAC) of 0.947, 0.735, 0.826, 0.857, and 0.655
for chewing, electrode pop, eye movement, muscle, and
shiver artifacts, respectively. When combined to per-
form binary artifact classification (any artifact type vs.
background EEG), the binary artifact detector achieves
a sensitivity (SEN) of 42.0%, 32.0%, and 13.3% at
95%, 97%, and 99% specificity (SPE), respectively. This
artifact detector can detect specific artifacts and reject
them from EEGs, resulting in a cleaner EEG for a better
reviewing experience.

II. Methods
A. Scalp EEG recordings and preprocessing

In this study, we analyzed the public TUH Artifact
Corpus (TUH-ART), containing EEGs with artifact
annotations [10]. The dataset consists of five artifacts
types: chewing, electrode pop, eye movement, muscle,
and shiver (see Table I). On each EEG, we applied
a Butterworth notch filter (4th order) at 60Hz (USA)
to remove interference and a 1Hz high-pass filter (4th
order) to remove noise [9]. We downsampled all EEGs
to 128Hz. We trained the artifact detectors via 5-fold
cross-validation (CV), where each fold contains different
patients and similar distribution across all five artifact
types.

B. Channel-level Artifact Detection
First, we develop a system to detect artifacts at

individual EEG channels (channel-level analysis). We
train a separate channel-wise detector on the TUH-
ART dataset for each of the five artifact types. The
channel-level artifact detector is a CNN cascaded with
a transformer, while the learning objective function is a
BM loss [11] (see Figure 3).

A CNN is not adequate for modeling correlations be-
tween distant data points. This inherent limitation makes
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Fig. 3. CNN with transformer encoder.

CNN less suitable for time series, especially when cor-
relations over relatively long periods are expected, such
as long artifacts patterns (e.g., eye movement artifacts).
Therefore, we augment the CNN with a transformer to
compensate for this limitation since transformers can
extract long-range patterns in the features extracted by
the CNN.

In addition, it is essential to have a reliable measure
of the uncertainty associated with a detection (output of
the neural network) such that we can be confident in the
detections with low uncertainty. To this end, we deploy a
BM loss instead of the traditional softmax (SM) loss, as it
yields more reliable uncertainty estimates [11]. The BM
framework is a Bayesian approach that views the binary
classification from a distribution matching perspective,
making it a more reliable detector. Moreover, Joo et
al. observed improvements in generalization, a desirable
property for the application at hand [11]. The BM loss
is defined as:

L(W) ≈ − 1

m

m∑
i=1

lEB

(
y(i), αW(x(i))

)
, (1)

where x(i) and y(i) are the i-th training data and its
label, respectively, m is the total number of training
data, lEB is the evidence lower bound (ELBO) [11], and
αW = exp(W), where W are the weights of the neural
network classifier.

The input of the CNN-Transformer is the L-second
single-channel EEG window that is split into 0.5s local
segments with 25% overlap (see Figure 3). We trained
the model with different window lengths L, i.e., 1, 3,
and 5s. We varied the window lengths to determine the
best window length to detect artifacts. For instance, a
short window length of 1s is adequate to remove short-
duration eye blinks, while a long window length of 5s is
suitable to remove long-duration muscle artifacts.

The CNN architecture consists of 5 convolution layers,
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Fig. 4. Artifact detection pipeline.

all with a filter size of 3 and a ReLU activation function.
The number of filters is 8, 16, 32, 64, and 128 in layers
1, 2, 3, 4, and 5, respectively. After each convolution
layer, we apply max-pooling with stride 2. Next, we
deploy a transformer encoder to identify patterns in
the features extracted by the CNN [12]. The encoder
relies on an activation function that maps the query and
a set of key-value pairs to an output. Here, the local
features extracted by the CNN are the query, key, and
value simultaneously. We set the number of heads in
the transformer to the commonly chosen value of 8 [12]
and the number of neurons in the hidden layer of the
feed-forward network (FNN) module to 1024. Two fully
connected (FC) layers containing 100 and 2 neurons
follow the CNN-Transformer module. Before the final
FC layer, we include a dropout layer with a probability
of 0.5. The output of the second FC is the prediction for
that particular window of EEG. Finally, we applied the
Adam optimizer [13] with an initial learning rate equal
to 10−4 to minimize the BM loss. The batch size for
training is 1000. We applied balanced training to avoid
overfitting during training by applying weights to each
class. We optimized the hyperparameters of the CNN-
Transformer via nested CV on the training data with an
80%:20% split for training and validation.
C. Segment-level Artifact Detection

Next, we wish to detect artifacts in multi-channel
segments (see Figure 4). To perform binary classification
of a specific artifact type, we performed the following:

1) Perform channel-level predictions on all channels
in a multi-channel segment.

2) With the set of probabilities outputs and knowl-
edge of their location, we distribute probability out-
puts accordingly to seven regions: frontal, frontal-
temporal, non-frontal (all non-frontal channels),
central, parietal, occipital, and the entire scalp.

3) From each region, we extract statistical features:
mean, median, standard deviation, maximum val-
ues, minimum values, and the histogram features (5
bins, range: [0,1]). This corresponds to 10 features
per region.

This results in 70 features for each artifact type.
Additionally, we include the cross-correlation and auto-
correlation of the signals between channel FP1/FP2 and
channel F7/F8 to account for eye blink features in each
feature set. Eventually, we obtain 74 features from each
multi-channel segment for the training and testing of
each artifact class. We performed segment-level binary
classification (specific artifact vs. background) for each
artifact type. We classify the features with CatBoost [14],
and optimize the hyperparameters by grid search.

Lastly, we concatenate the probability outputs from
the five segment-level classifiers. With all the features,
we trained a CatBoost classifier to detect any of the five

artifacts types; in other words, this system is designed
to determine whether a multi-channel EEG segment
is clean or contains artifact(s). Finally, we evaluate
the systems with the following metrics: area under the
receiver operator characteristic (AUC), area under the
precision-recall curve (AUPRC), accuracy (ACC), bal-
anced accuracy (BAC), sensitivity (SEN), and specificity
(SPE) [9]. NVIDIA GeForce GTX1080 GPU machines,
Keras 2.2.0 and TensorFlow 2.6.0 were adopted in this
study.

III. Results
The channel- and segment-level artifact detection re-

sults are displayed in Table II and III. We achieved
the best BAC for the chewing artifacts (above 90%),
while the BAC varies between 65% to 86% for the other
artifacts. Moreover, the segment-level results reported
improved performance over the channel-level results.
This can be because the multi-channel segments contain
more information than the single-channel segments due
to lower annotation uncertainty.

The best BAC is achieved at different window lengths
for each artifact type. Generally, we should deploy
small window lengths to detect electrode pops and eye
movement artifacts, and larger window lengths to detect
chewing, muscle, and shiver artifacts. Finally, we report
the SEN for the combined binary segment-level artifact
detector in Table IV. At an SPE of 95%, 97%, and 99%,
the highest SEN achieved is 42.0%, 32.0%, and 13.3%,
at a window length of 3s, 3s, and 5s, respectively. For
practical applications, one may choose a window length
of 3s and a threshold (Th) where SPE is 95% to avoid
rejecting too many clean EEG segments.

TABLE II
Results for channel-level artifact detection.

Artifact L AUC AUPRC ACC BAC SEN SPE

Chewing
1 0.961 0.95 0.901 0.901 0.894 0.907
3 0.966 0.904 0.933 0.911 0.856 0.966
5 0.967 0.864 0.95 0.906 0.835 0.978

Electrode
Pop

1 0.792 0.926 0.802 0.663 0.914 0.412
3 0.802 0.802 0.709 0.716 0.718 0.713
5 0.783 0.681 0.711 0.684 0.559 0.809

Eye
Movement

1 0.856 0.921 0.795 0.734 0.905 0.564
3 0.866 0.799 0.807 0.788 0.723 0.853
5 0.895 0.758 0.877 0.792 0.644 0.94

Muscle
1 0.794 0.949 0.936 0.76 0.99 0.529
3 0.931 0.973 0.907 0.836 0.961 0.711
5 0.934 0.957 0.888 0.861 0.942 0.78

Shiver
1 0.657 0.138 0.527 0.527 0.091 0.994
3 0.61 0.056 0.986 0.563 0.182 0.943
5 0.756 0.066 0.994 0.621 0.364 0.878

IV. Discussion
In the following, we compare our results to the liter-

ature. Roy performed multi-class artifact classification
and reported a SEN of 72.39% for the background
class [7]. Abdi et al. deployed wavelet transform to detect
and reject artifacts. They measured the effectiveness of
their artifact detector indirectly by performing brain-
computer interface (BCI) classification and achieved
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TABLE III
Results for segment-level artifact detection.

Artifact L AUC AUPRC ACC BAC SEN SPE

Chewing
1 0.968 0.719 0.971 0.910 0.842 0.977
3 0.972 0.791 0.982 0.947 0.909 0.986
5 0.892 0.701 0.986 0.921 0.851 0.991

Electrode
Pop

1 0.792 0.306 0.803 0.731 0.632 0.830
3 0.818 0.270 0.855 0.734 0.587 0.881
5 0.818 0.223 0.875 0.735 0.577 0.894

Eye
Movement

1 0.895 0.607 0.826 0.826 0.824 0.829
3 0.887 0.440 0.874 0.810 0.731 0.888
5 0.869 0.351 0.873 0.820 0.761 0.880

Muscle
1 0.896 0.739 0.808 0.840 0.934 0.746
3 0.906 0.676 0.817 0.857 0.937 0.778
5 0.901 0.583 0.810 0.857 0.931 0.783

Shiver
1 0.691 0.027 0.993 0.516 0.034 0.997
3 0.770 0.068 0.994 0.530 0.062 0.998
5 0.661 0.308 0.996 0.655 0.311 0.998

TABLE IV
Results for segment-level artifact detection , where all artifacts

are grouped together.

L AUC AUPRC SPE @95% SPE @97% SPE @99%
SEN Th SEN Th SEN Th

1 0.876 0.866 0.401 0.821 0.306 0.855 0.127 0.916
3 0.870 0.796 0.420 0.812 0.320 0.871 0.114 0.927
5 0.873 0.732 0.367 0.827 0.269 0.853 0.133 0.899

an ACC improvement from 63% to 72.5% with the
artifact rejection module [4]. Mashhadi et al. reject
ocular artifacts by means of U-NET, and reported a
mean square error (MSE) of 0.00712 [8]. Meanwhile,
Dhindsa performed artifact classification on an EEG
dataset with four channels and achieved an ACC of
93.3% and AUC of 0.923 [15]. Finally, Pion-Tonachini
et al. deployed ICA and CNN/GAN to classify EEG
independent components (IC), and achieved BAC of
0.855, 0.623, and 0.597, for 2, 5, and 7-class classification,
respectively [3]. For all scenarios, they reported SEN of
73% for the background class.

Compared to these studies, our system performs better
in terms of SPE, as our system reports a high SPE of
95% while achieving decent SEN of 42.0% for the artifact
class, making it suitable for real-world application. In
contrast, the studies by [7], [4], [8], [3] might be less
suitable for real-world applications which require high
SPE to avoid rejecting too much clean EEG. The ma-
jority of existing studies reported low SEN for the clean
EEG (less than 75%), which is unacceptable as it can
lead to a significant loss of valuable EEG information.

V. Conclusion

We have proposed a neural system for automated
detection of five artifact classes: chewing, electrode pop,
eye movement, muscle, and shiver artifacts. The channel-
wise detector consists of a CNN followed by a transformer
optimized via a BM loss. The outputs of the CNN-
Transformer at multiple channels are then combined
via another classifier for artifact detection in multi-
channel EEG segments. The proposed system can reject
a substantial fraction of artifacts while only removing a

small fraction of clean EEG, thus potentially improving
the readability of EEG recordings.

References
[1] C.-Y. Chang, S.-H. Hsu, L. Pion-Tonachini, T.-P. Jung,

Evaluation of artifact subspace reconstruction for automatic
eeg artifact removal, in: 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), IEEE, 2018, pp. 1242–1245.

[2] X. Jiang, G.-B. Bian, Z. Tian, Removal of artifacts from eeg
signals: a review, Sensors 19 (5) (2019) 987.

[3] L. Pion-Tonachini, K. Kreutz-Delgado, S. Makeig, Iclabel: An
automated electroencephalographic independent component
classifier, dataset, and website, NeuroImage 198 (2019) 181–
197.

[4] B. Abdi-Sargezeh, R. Foodeh, V. Shalchyan, M. R. Daliri,
Eeg artifact rejection by extracting spatial and spatio-spectral
common components, Journal of Neuroscience Methods 358
(2021) 109182.

[5] J. Thomas, P. Thangavel, W. Y. Peh, J. Jing, R. Yuvaraj, S. S.
Cash, R. Chaudhari, S. Karia, R. Rathakrishnan, V. Saini,
et al., Automated adult epilepsy diagnostic tool based on
interictal scalp electroencephalogram characteristics: A six-
center study, International Journal of Neural Systems (2021)
2050074.

[6] P. Thangavel, J. Thomas, W. Y. Peh, J. Jing, R. Yuvaraj,
S. S. Cash, R. Chaudhari, S. Karia, R. Rathakrishnan,
V. Saini, et al., Time–frequency decomposition of scalp
electroencephalograms improves deep learning-based epilepsy
diagnosis, International Journal of Neural Systems (2021)
2150032.

[7] S. Roy, Machine learning for removing eeg artifacts: Setting
the benchmark, arXiv preprint arXiv:1903.07825.

[8] N. Mashhadi, A. Z. Khuzani, M. Heidari, D. Khaledyan, Deep
learning denoising for eog artifacts removal from eeg signals,
in: 2020 IEEE Global Humanitarian Technology Conference
(GHTC), IEEE, 2020, pp. 1–6.

[9] W. Y. Peh, J. Thomas, E. Bagheri, R. Chaudhari, S. Karia,
R. Rathakrishnan, V. Saini, N. Shah, R. Srivastava, Y.-
L. Tan, et al., Multi-center validation study of automated
classification of pathological slowing in adult scalp electroen-
cephalograms via frequency features, International Journal of
Neural Systems (2021) 2150016.

[10] A. Hamid, K. Gagliano, S. Rahman, N. Tulin, V. Tchiong,
I. Obeid, J. Picone, The temple university artifact corpus:
An annotated corpus of eeg artifacts, in: 2020 IEEE Signal
Processing in Medicine and Biology Symposium (SPMB),
IEEE, 2020, pp. 1–4.

[11] T. Joo, U. Chung, M.-G. Seo, Being bayesian about categorical
probability, in: International Conference on Machine Learning,
PMLR, 2020, pp. 4950–4961.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you
need, in: Advances in neural information processing systems,
2017, pp. 5998–6008.

[13] D. P. Kingma, J. Ba, Adam: A method for stochastic opti-
mization, arXiv preprint arXiv:1412.6980.

[14] A. V. Dorogush, V. Ershov, A. Gulin, Catboost: gradient
boosting with categorical features support, arXiv preprint
arXiv:1810.11363.

[15] K. Dhindsa, Filter-bank artifact rejection: High performance
real-time single-channel artifact detection for eeg, Biomedical
Signal Processing and Control 38 (2017) 224–235.

3602

Authorized licensed use limited to: KU Leuven University Library. Downloaded on February 17,2026 at 10:54:51 UTC from IEEE Xplore.  Restrictions apply. 


