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Stimulus-Informed Generalized Canonical
Correlation Analysis for Group Analysis of

Neural Responses to Natural Stimuli
Simon Geirnaert , Yuanyuan Yao , Tom Francart , and Alexander Bertrand

Abstract—Various new brain-computer interface tech-
nologies or neuroscience applications require decoding
stimulus-following neural responses to natural stimuli such
as speech and video from, e.g., electroencephalography
(EEG) signals. In this context, generalized canonical cor-
relation analysis (GCCA) is often used as a group analysis
technique, which allows the extraction of correlated signal
components from the neural activity of multiple subjects
attending to the same stimulus. GCCA can be used to
improve the signal-to-noise ratio of the stimulus-following
neural responses relative to all other irrelevant (non-)neural
activity, or to quantify the correlated neural activity across
multiple subjects in a group-wise coherence metric. How-
ever, the traditional GCCA technique is stimulus-unaware:
no information about the stimulus is used to estimate the
correlated components from the neural data of several sub-
jects. Therefore, the GCCA technique might fail to extract
relevant correlated signal components in practical situa-
tions where the amount of information is limited, for ex-
ample, because of a limited amount of training data or
group size. This motivates a new stimulus-informed GCCA
(SI-GCCA) framework that allows taking the stimulus into
account to extract the correlated components. We show
that SI-GCCA outperforms GCCA in various practical set-
tings, for both auditory and visual stimuli. Moreover, we
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showcase how SI-GCCA can be used to steer the estimation
of the components towards the stimulus. As such, SI-GCCA
substantially improves upon GCCA for various purposes,
ranging from preprocessing to quantifying attention.

Index Terms—Generalized canonical correlation
analysis, correlated component analysis, electroence-
phalography, stimulus-following neural response.

I. INTRODUCTION

TRADITIONALLY, brain-computer interface (BCI) and
other neuroscience applications are oriented towards active

paradigms, requiring the active participation of a user following
instructions. Furthermore, they use multi-trial designs, requiring
the same stimulus to be repeated multiple times to be able to
average the brain responses to enhance the signal-to-noise (SNR)
ratio. Moreover, synthetic stimuli such as flickering checker-
board patterns or beep sounds are used to elicit more controllable
and deterministic neural responses, such as the P300-response
or steady-state visual-evoked potentials (SSVEPs) [1]. While
such controlled BCI paradigms are valuable from a scientific
point of view, their practical impact is often limited to a few
niche applications, for example, to re-establish communication
for patients suffering from locked-in syndrome [1], [2]. To open
up BCI technology to much more widespread usage in the daily
life context, the limiting artificial conditions of such controlled
BCI paradigms need to be alleviated.

In the past few years, we have seen a surge of BCI applications
that are passive, i.e., tapping into the natural behavior of a user,
single-trial, i.e., not requiring repetitions of the stimulus, and
operate on natural sensory stimuli, such as speech/music and
natural video [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13]. These new BCI paradigms can then be employed in much
more mainstream application domains, such as hearing aids
and consumer earphones [3], [4], [14], [15], [16], educational
sciences [5], [11], [17], neuromarketing [6], or virtual reality
environments [18]. Many of these applications involve decoding
stimulus-following neural responses, for example, to quantify
levels of absolute [8], [10], [19] or selective attention [3], [14] to
a particular auditory or visual stimulus. The temporal dynamics
of the stimulus then result in a so-called stimulus-following neu-
ral response (i.e., the neural tracking phenomenon [20]), which
can be decoded from different neurorecording modalities such as
electroencephalography (EEG) [20], magnetoencephalography
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(MEG) [21], or electrocorticography (ECoG) [22]. The EEG
modality is particularly interesting because it is non-invasive,
low cost and highly mobile [1].

However, decoding neural responses to natural stimuli is
much more challenging from a signal processing perspective,
given that they are much more unpredictable (resulting from
the nature of the stimulus) and suffer from a very low SNR,
as the targeted stimulus-following neural responses are buried
under all kinds of non-neural and neural noise. Given the single-
trial paradigm, averaging the responses across multiple trials is
not an option anymore to deal with this extremely low SNR.
Therefore, much more advanced, data-driven signal process-
ing algorithms are required and being developed to enhance
the targeted stimulus-following activity and suppress all other
noise [3], [23], [24]. In this paper, we focus on the group analysis
of such stimulus-following responses, i.e., we assume a set of
synchronized neural responses to the same natural stimulus is
available, e.g., from a group of subjects all attending to the same
stimulus. This synchronization hypothesis roots in the previ-
ously mentioned neural tracking phenomenon of natural stimuli,
where the coherent neural responses across subjects arise from
the synchronized stimulus-following neural responses. Impor-
tantly, this synchronization across subjects refers only to these
stimulus-locked responses that are typically earlier responses,
appearing in the 0–400 ms post-stimulus range [14], [20], [21],
[22]. More complex, longer-latency responses that are, for exam-
ple, related to emotional arousal or cognition are unlikely to be
synchronous across subjects. This hypothesis of synchronicity
for group decoding has been confirmed in various papers in
literature using data-driven decoding algorithms (e.g., [5], [6],
[7], [8], [13], [25], [26]). The group analysis of the stimulus-
following neural responses can be a goal in itself, e.g., to decode
a notion of group attention to the stimulus, as employed in edu-
cational neuroscience [5] or neuromarketing [6]. Alternatively,
the group information can be leveraged to assist the decoding
of stimulus-following neural responses on an individual level,
using it as, e.g., a preprocessing technique to a priori improve
the SNR [25], [26].

In this paper, we specifically focus on a signal processing
technique called generalized canonical correlation analysis
(GCCA), the multi-view extension of the frequently used canon-
ical correlation analysis (CCA) [27], [28]. CCA extracts the
correlated components between two views of the same activ-
ity [29]. In more traditional BCI’s that, for example, decode
SSVEPs, CCA is one of the most commonly used algorithms
for classification by maximizing the correlation between the
EEG responses and template reference signals that model the
different flickering stimuli at their specific frequency (including
harmonics) [30]. In the context of natural stimulus-following
neural responses, CCA is, for example, used to decode the
speech envelope of an attended speech source from EEG [9],
[31]. In CCA, a decoder on the multi-channel EEG is then
simultaneously trained with an encoder on the speech envelope
to find these correlated components. The resulting correlation
can then be used to decode selective attention, e.g., between
two competing speech sources [3]. Its multi-view extension is

GCCA, where the objective is to decode correlated components
between more than two views of the same activity [27], [28].
In SSVEP-based BCIs, GCCA has been used to extract more
natural reference signals by extracting the correlated compo-
nents from several EEG trials containing responses to the same
stimulus frequency. These learned reference signals can then
be used in the previous two-view CCA method to classify new
SSVEPs [32]. GCCA is moreover often used when multiple
EEG signals from several users are available that simultaneously
attend to the same natural stimulus. GCCA can then be used to
quantify attention, enhance the SNR, reduce the dimensionality,
or summarize the set of EEG signals [5], [6], [13], [25]. An
excellent tutorial paper on GCCA (there dubbed MCCA) for
decoding brain responses is written by de Cheveigné et al.
[25].

A property of GCCA in this context is that it is stimulus-
unaware: to extract the correlated components from the syn-
chronized EEG signals, it does not assume or use any stimulus
information. This is attractive in situations where the stimu-
lus is unknown or unavailable, or when it is unknown what
features of the stimulus elicit decodable neural responses. How-
ever, this stimulus-unawareness can be a disadvantage at the
same time, e.g., when the stimulus is available or known, which
occurs when a particular stimulus is deliberately used (e.g., in
neuromarketing) or can be recorded (e.g., in hearing aids, in the
classroom). Exploiting the stimulus in those situations as side
information to help (e.g., in a regularization context) or steer the
estimation of the correlated components across the synchronized
EEG activity can then be highly beneficial, especially if we
consider the very low SNR of the stimulus-following neural
responses. This very low SNR is even harder to cope with
when the amount of estimation data is limited, as is the case
in a time-adaptive, online processing context [4], or when the
group size is limited by the application. Therefore, the objective
of this paper is to develop and analyze a stimulus-informed
GCCA (SI-GCCA) algorithm that allows taking the stimulus
into account when performing a group analysis of stimulus-
following neural responses. While the use of CCA to extract
correlated components between (individual) neural responses
and the (natural) stimulus has been successfully established
(see before and, e.g., [9], [30], [31]), such a group analysis of
multiple stimulus-following neural responses where the neural
decoders are specifically steered to yield responses that are
(more) coherent with the natural auditory/visual stimulus has
not yet been developed.

The paper is structured as follows. In Section II, we explain the
well-known MAXVAR algorithm for GCCA and its correlated
component analysis (corrCA) variant. In Section III, we derive
our proposed SI-GCCA algorithm. In Section IV, we then de-
scribe all necessary details about the datasets and experiments
to analyze the developed algorithms. The results are shown and
discussed in Section V, and conclusions are drawn in Section VI.

Disclaimer: A conference precursor of this manuscript has
been published in [33]. The current manuscript contains a more
extensive explanation of the developed algorithm, includes an
additional variant (e.g., the corrCA and SI-corrCA algorithm),

Authorized licensed use limited to: KU Leuven University Library. Downloaded on February 17,2026 at 10:52:44 UTC from IEEE Xplore.  Restrictions apply. 



972 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 29, NO. 2, FEBRUARY 2025

Fig. 1. In this work, we consider the EEG data Xk of K subjects attending to the same natural stimulus, represented by Y. In GCCA, the intuitive
objective is to find per-subject neural decoders Wk that maximize the pairwise correlation between the neurally decoded signals XkWk. Here we
implement this objective via the MAXVAR framework. In our proposed SI-GCCA framework, the stimulus is included in the optimization problem via
a stimulus encoder V to steer and regularize the estimation problem.

does not only focus on speech as in [33] but also includes video,
includes additional experiments, and provides additional use
cases of the algorithm and a more in-depth analysis.

II. MAXVAR-GCCA/CORRCA

In canonical correlation analysis (CCA), the objective is to
find the components that exhibit the highest correlation across
two different views or subjects. There exist multiple options to
generalize CCA to more than two views or subjects as envisaged
in generalized canonical correlation analysis (GCCA), such as
MAXVAR, SUMCORR, SSQCORR, ... [27], [28] However,
the two most popular variants are SUMCORR and MAXVAR,
which both have the traditional CCA for two views as a special
case [34]. SUMCORR naturally extends CCA to more than
two views by maximizing the sum of pairwise correlations
between the different filtered views. However, this optimization
problem turns out to be NP-hard with no closed-form solution
[35]. Therefore, a relaxation of the SUMCORR-problem is
often used, the MAXVAR-problem, in which the average pair-
wise distance between the filtered views is minimized. Hence,
MAXVAR starts from a different interpretation of the CCA
problem and conveniently boils down to a closed-form solution
in the form of a generalized eigenvalue decomposition (GEVD),
similar to CCA [27], [36], [37]. An interesting property of such
a GEVD is that it is invariant under a scaling of one the views
in the (G)CCA problem (see Lemma I in Hassani et al. [38]).
Because of this attractive property of the MAXVAR-GCCA
formulation (i.e., boiling down to a GEVD) and because it
allows for an easier introduction of the stimulus information
(see Section III), we choose this formulation in this work. The
MAXVAR-GCCA formulation for stimulus-following neural
responses is introduced in Section II-A. In the context of a group
analysis of stimulus-following neural responses [25], sometimes
an additional constraint is added to enforce identical neural
decoders across all subjects [5], [6], [9]. GCCA with this ad-
ditional constraint is often referred to as ‘correlated component
analysis’ (corrCA) and will be briefly reviewed in Section II-B.

The additional constraint in corrCA acts as a regularizer to limit
the degrees of freedom in the model, avoiding overfitting in cases
where the amount of data is limited.

A. MAXVAR-GCCA

We consider the EEG data from K subjects attending to the
same natural stimulus, for example, a speech signal or video.
This setup is visualized in Fig. 1. We denote Xk ∈ RT×M as
the EEG data of the kth subject, where T denotes the number of
available EEG samples. Each EEG sample is M -dimensional,
corresponding to, for example, different EEG channels and/or
time-lagged copies of each channel, where the latter allows to
also exploit spectral or temporal information in the data-driven
decoder design. Such temporal filtering is, for example, needed
to compensate for temporal differences in neural processing
between subjects in the group. Given C EEG channels and L
time lags, ranging from −L−1

2 to L−1
2 (assuming L is odd), the

EEG data matrix Xk when using spatiotemporal filtering will
then consist ofM = CL columns. The resulting EEG regression
matrix Xk is in that case a block Hankel matrix, e.g., for L = 5:

Xk = [Xk,1 . . . Xk,C ],

Xk,c =⎡
⎢⎢⎢⎢⎢⎣

0 0 xk,c(0) xk,c(1) xk,c(2)
0 xk,c(0) xk,c(1) xk,c(2) xk,c(3)

xk,c(0) xk,c(1) xk,c(2) xk,c(3) xk,c(4)
...

...
...

...
...

xk,c(T − 3) xk,c(T − 2) xk,c(T − 1) 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

with xk,c(t) the cth-channel EEG signal of the kth subject.
While not strictly necessary, for simplicity, we assume an equal
dimensionality per subject, i.e., M is the same across the EEG
recordings of all subjects. We also assume that the EEG data in
Xk is centered or high-pass filtered such that it is zero-mean.

The objective is to find the M ×Q-dimensional neural de-
coders Wk ∈ RM×Q such that the individual projected signals
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XkWk ∈ RT×Q across all subjects k = 1, . . . ,K are on aver-
age as close as possible to each other. This can be realized by
introducing aQ-dimensional shared signal subspace spanned by
the columns of S = [s1 · · · sQ] ∈ RT×Q, and also optimiz-
ing for this shared signal subspace to be on average closest to
XkWk, for all k [28], [37], [39]:

with IQ the Q-dimensional identity matrix and || · ||F the
Frobenius norm. The second term in (1) represents �2-norm
regularization or diagonal loading to avoid overfitting, where the
hyperparameter μ controls the amount of regularization added.
If μ = 0, no regularization is used, corresponding to the original
MAXVAR-GCCA problem. The constraint STS = IQ ensures
that subsequent neural decoders have orthogonal/uncorrelated
outputs on average1 and avoids the trivial solution where all
Wk’s and S are set to zero.

DefiningRkl = XT
kXl ∈ RM×M as the sample crosscorrela-

tion matrix of Xk and Xl (autocorrelation matrix when k = l),

RDxx
= Blkdiag(R11, . . . ,RKK) ∈ RKM×KM

represents the block diagonal matrix containing the per-subject
autocorrelation matrices, and

Rxx = XTX ∈ RKM×KM ,

withX = [X1 · · · XK ] ∈ RT×KM , is the correlation matrix
of all EEG data, containing all correlation matrices Rkl in its
blocks. The Karush-Kuhn-Tucker (KKT) conditions then lead
to the following generalized eigenvalue problem2 [37], [39]:

where W = [WT
1 · · · WT

K ]T ∈ RKM×Q concatenates all
per-subject neural decoders. We find the optimal neural decoders
W as the Q generalized eigenvectors (GEVcs) corresponding
to the Q smallest generalized eigenvalues (GEVls), which can
be found in the diagonal matrix Ω ∈ RQ×Q (see [37] and the
derivation of SI-GCCA in Section III-A). Furthermore, it can be
found that

S =

K∑
k=1

XkWkΩ. (3)

The correct scaling of the GEVcs and thus neural decoders is
determined via the equality constraint STS = IQ and (3).

1This is a major difference with the SUMCORR formulation, where the sub-
sequent neural decoders for each individual subjects should yield uncorrelated
outputs.

2The derivation of (2) is a special case of the derivation of the SI-GCCA
solution in Section III-A, i.e., for γ = 0.

Note that alternatively to solving the generalized eigenvalue
decomposition (GEVD) in (2), the neural decoders can also
be found via the eigenvalue decomposition of the correlation
matrix of all the pre-whitened data matrices of each subject. As
such, GCCA can be formulated as concatenating two principal
component analysis (PCA) blocks in a two-step analysis, which
might be more intuitive and easy to understand, as explained and
motivated in [25]. As furthermore explained in [25], the inverse
eigenvalues of (2) represent the degree of correlation that exists
for each component. A component that is only present in the data
of a single subject corresponds to a unit eigenvalue, whereas
a component shared by exactly P data matrices corresponds
to an associated eigenvalue of 1

P . As such, the eigenvalues
are smaller for signal components that are shared by many
subjects.

B. MAXVAR-corrCA

In the GCCA problem in Section II-A, for each subject
k, a different neural decoder Wk is trained. As an addi-
tional constraint, one could restrict these per-subject neural
decoders to be the same across subjects, i.e., W1 = · · · =
WK = W ∈ RM×Q, which is dubbed corrCA in [5], [6], [9].
From a parameter estimation point of view, this can be viewed
as an additional regularization, as the number of parameters
that need to be estimated drastically decreases. From a neural
point of view, this assumes more uniform neural signals across
subjects.

In MAXVAR-corrCA with diagonal loading, the optimization
problem in (1), therefore, boils down to:

The KKT conditions then lead to the following generalized
eigenvalue problem3:

As opposed to the GEVD in (2), which is of dimension KM ,
this GEVD is only of dimension M , effectively showing the
regularization aspect of corrCA. Moreover, the matrices in (5)
correspond to the sum of the M ×M block matrices of RDxx

and Rxx, respectively, showing the effect of restricting the per-
subject neural decoders to be the same.

3Again, the derivation can be viewed as a special case of the derivation in
Section III-A, when γ = 0.
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III. SI-GCCA/SI-CORRCA

We now propose the stimulus-informed GCCA (SI-GCCA)
technique for the group analysis of stimulus-following neu-
ral responses, in which we include the stimulus as side in-
formation, as visualized in Fig. 1. The implicit assumption
in SI-GCCA is, therefore, that the correlated components
across the K different EEG recordings correspond to (early)
stimulus-following/-related neural responses, as explained in
the introduction. This assumption also delineates the context
in which we propose SI-GCCA, i.e., all K EEG recordings are
recorded using the same natural stimulus and are synchronized in
time.

The stimulus is incorporated in the GCCA technique with
two objectives in mind. Firstly, to steer the estimation of
the correlated components towards the stimulus and spe-
cific stimulus representations. Secondly, it can be viewed
as task-informed regularization (in the broad sense), as it
allows to take additional information into account to cope
with situations where less information (e.g., little data, few
subjects) is available. Both objectives will be evaluated in
Section V.

A. SI-GCCA

Apart from the K zero-mean EEG signals Xk, now also
assume we have access to the stimulus via the P -dimensional
stimulus representation Y ∈ RT×P (see Section IV-B-1 for ex-
amples of such a representation for a speech and video stimulus).
In SI-GCCA, our goal is to ensure that the shared signal subspace
S, which connects the EEGs of the different subjects, is also
close to the stimulus representation Y, i.e., the signals in S and
Y should be correlated. We do this by introducing an extra term
into the MAXVAR-GCCA estimation problem in (1), where we
use a forward model/encoderV ∈ RP×Q on the stimulus to map
it to the shared signal subspace S:

The hyperparameter γ determines how much weight is put
onto the stimulus, i.e., how hard the stimulus ‘pulls’ on the shared
signal subspace. The motivation behind using a simple forward
model V on the stimulus representation is that it essentially
retains the MAXVAR-GCCA structure as in (1), where the
stimulus acts as an additional view of the underlying shared
subspace. We will show that, as a result, SI-GCCA retains the
attractive property of MAXVAR-GCCA that it can be solved via
a GEVD.

The Lagrangian function is equal to:

L(W1, . . . ,WK ,V,S,Λ) = (K + γ)Tr (STS)

− 2

K∑
k=1

Tr (STXkWk) +

K∑
k=1

Tr (WT
kX

T
kXkWk)

− 2γTr (STYV) + γTr (VTYTYV) + μ

K∑
k=1

Tr (WT
kWk)

+ μTr (VTV)− Tr ((STS− IQ)Λ) ,

with Λ ∈ RQ×Q a symmetric matrix containing the Lagrange
multipliers. The KKT conditions then lead to the following four
equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇Wk
(L) = 0 ⇐⇒ XT

kS = (Rkk + μIM )Wk, ∀k (7)
∇V (L) = 0 ⇐⇒ γYTS = (γRyy + μIP )V, (8)

∇S (L) = 0 ⇐⇒ S =

(
K∑

k=1

XkWk + γYV

)
Ω, (9)

∇Λ (L) = 0 ⇐⇒ STS = IQ, (10)

with Ryy = YTY ∈ RP×P the stimulus autocorrelation matrix
and Ω = ((K + γ)IQ −Λ)−1 ∈ RQ×Q a symmetric matrix.
Define the crosscorrelation matrix between EEG data matrix
Xk and stimulus data matrix Y as Rky = XT

kY ∈ RM×P ,
and the augmented data matrix X̄ = [X1 · · · XK Y] ∈
RT×(KM+P ) and variables W̄ = [WT

1 · · · WT
K VT]T ∈

R(KM+P )×Q, both including the stimulus data matrix and,
respectively, the forward encoder. By plugging (9) into (7) and
(8), and combining all equations, we find:

where Rx̄x̄ = X̄TX̄ ∈ R(KM+P )×(KM+P ), RDx̄x̄
= Blkdiag

(R11, . . . ,RKK ,Ryy), and

P =

[
IKM 0

0 γIP

]
(weighting matrix).

Using this in (7), we find

PRDx̄x̄
= Blkdiag(R11, . . . ,RKK , γRyy) ,

and

PRx̄x̄P =

⎡
⎢⎢⎢⎢⎣
R11 . . . R1K γR1y

...
...

...

RK1 . . . RKK γRKy

γRy1 . . . γRyK γ2Ryy

⎤
⎥⎥⎥⎥⎦ .

While (7) resembles a generalized eigenvalue problem, Ω
is not a diagonal matrix. However, it can be easily found
that the underlying solution boils down to a GEVD, given
that Ω is orthogonally diagonalizable as it is a symmetric
matrix:

Ω = UΣUT, (12)
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Algorithm 1: SI-GCCA.

Input: K stimulus-driven EEG signals Xk ∈ RT×M ,
stimulus features Y ∈ RT×P , stimulus hyperparameter
γ, �2-norm regularization hyperparameter μ, subspace
dimension Q

Output: Per-subject neural decoders Wk∈ RM×Q

1: Compute correlation matrices Rx̄x̄ and
RDx̄x̄

= Blkdiag(R11, . . . ,RKK ,Ryy), with
X̄ = [X1 · · · XK Y], Rkk = XT

kXk, and
Ryy = YTY

2: Compute W̄ as the Q GEVcs corresponding to the Q
smallest GEVls of the matrix pencil
(PRDx̄x̄

+ μIKM+P ,PRx̄x̄P), with

P =
[
IKM 0

0 γIP

]
3: Scale the GEVcs such that STS = IQ, with S defined

in (9)
4: Extract Wk from W̃ = [WT

1 · · · WT
K VT]T

with U ∈ RQ×Q an orthogonal matrix and Σ ∈ RQ×Q a diago-
nal matrix. Substituting (12) in (7) reveals the underlying GEVD
that leads to the solution:

(PRDx̄x̄
+ μIKM+P )W̄U = PRx̄x̄PW̄UΣ. (13)

From (13), it can be seen that the set of optimal neural de-
coders and stimulus encoders defined by W̄ are in the subspace
spanned by the GEVcs from the matrix pencil (PRDx̄x̄

+
μIKM+P ,PRx̄x̄P). Given that P is a symmetric matrix,
and (PRDx̄x̄

)T = RT
Dx̄x̄

PT = RDx̄x̄
P = PRDx̄x̄

, (13) is the
GEVD of a matrix pencil of two real symmetric matrices with
PRx̄x̄P positive definite, therefore, resulting in a real solution
for GEVcs and GEVls (found on the diagonal of Σ). Further-
more, as the solution of (6) is only defined upon any orthogonal
transformation, and since the objective function at the optimal
solution can be found4 to be equal to (K + γ)Q− Tr(Σ−1),
we find the optimal neural decoders Wk and stimulus en-
coder V as the Q GEVcs corresponding to the Q smallest
GEVls. The equality constraint in (10) determines the correct
scaling of the GEVcs. We summarize the SI-GCCA algo-
rithm in Algorithm 1. A MATLAB implementation is available
[40].

B. SI-corrCA

In the stimulus-informed corrCA (SI-corrCA) version we
constrain the per-subject neural decoders to be the same across
subjects. In this scenario, we are most heavily introducing
additional constraints into the group decoding problem: all
neural decoders are the same across subjects (corrCA) and
the correlated components must resemble the stimulus features

4Proofs are omitted for conciseness.

(stimulus-informed). The optimization problem then becomes:

The KKT conditions then, similarly to Section III-A, lead to
the following generalized eigenvalue problem:

merging properties from both the MAXVAR-corrCA solution in
(5) and the SI-GCCA solution in (13).

IV. EXPERIMENTS

We will evaluate and compare the different GCCA and SI-
GCCA variants based on the EEG signals of a group of subjects
listening to the same speech signals or watching the same videos.
In this section, we describe the experiments in terms of the
datasets (Section IV-A), the EEG preprocessing and stimulus
feature extraction (Section IV-B), the performance evaluation
schemes and metrics (Section IV-C), and the decoder setup
(Section IV-D). MATLAB code to reproduce all experiments
is available online [40].

A. Datasets

Two datasets are used to compare the various methods: one
with natural speech and one with video footage as the stimulus.

1) Speech Dataset: The speech dataset is taken from the
first experiment of Broderick et al. [41] and contains the EEG
data of 19 normal-hearing subjects listening to the same audio-
books. The EEG data is recorded with a 128-channel BioSemi
ActiveTwo system and is re-referenced to the average mastoid
channel. The data was recorded per subject separately in 20 trials
of around 3 min long and is cut into 52 1 min-trials for further
processing. In total, there is 52 min of synchronized EEG/speech
data per subject. This dataset is publicly available [42].

2) Video Dataset: The video dataset is taken from the Single-
Shot dataset of Yao et al. [13] and contains the EEG data of
20 healthy subjects with normal or corrected-to-normal vision
watching the same video footage. The video footage consists of
a single moving person during a performance (e.g., dance, magic
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shows). The EEG data is recorded with a 64-channel BioSemi
ActiveTwo system. The data was recorded per subject separately
in 2 trials of around 36 and 35 min and is cut into 56 1 min-trials
for further processing. This dataset is publicly available [43].

B. Stimulus Feature Extraction and EEG Preprocessing

1) Stimulus Features:
a) Speech: The speech signals are represented by the

low-frequency envelope of the speech signal, computed using
the Hilbert transform [44]. In various works (e.g., [14], [15],
[16], [44]), it has been shown that the EEG signals track this
speech envelope. Moreover, we bandpass-filter the speech enve-
lope using a 4th-order Butterworth filter in the δ-band (1–4 Hz),
where it is shown to give good tracking results [10]. The resulting
signal is stored in a one-dimensional vector y ∈ RT containing
the samples of the envelope at different time instances during
the experiment. This representation y of the speech stimulus
will be used in the SI-GCCA framework to create the matrix Y
(see also Section IV-D).

Note that while in this work, we choose the speech envelope as
an exemplary stimulus representation for natural speech, other
(higher-level) features such as, e.g., phoneme and word onsets,
phoneme and word surprisal, or cohort entropy could be (even
additionally) used, as they are shown to also synchronize with
neural signals [45], [46], [47].

b) Video: The video stimulus is represented by an
object-based version of the average optical flow, i.e., the magni-
tude of the pixel-wise velocity vector between frames averaged
across all pixels belonging to an object in the video (after object
segmentation) [13]. This again results in a one-dimensional vec-
tor y ∈ RT . In Yao et al. [13], it is shown that the object-based
optical flow leads to significant tracking in the EEG signals of
subjects watching a video. This object-based optical flow is
computed after resampling (including anti-aliasing) the video
data to 30 Hz and resizing it to 854× 480 pixels [13].

2) EEG Preprocessing: The EEG data are preprocessed sim-
ilarly to the original references of the datasets [13], [41]. This
means that the EEG data for the video dataset is first prepro-
cessed by interpolating bad channels, average re-referencing,
notch filtering to remove the powerline noise, and regressing
out eye activity using EOG. For the speech dataset, the EEG
data were re-referenced to the average of the mastoid channels.
Additionally, the EEG data is bandpass-filtered (between 1–4
Hz for the speech dataset and 0.5–15 Hz for the video dataset),
downsampled (to 8 Hz for the speech dataset and 30 Hz for the
video dataset), and normalized. In both cases, the EEG data are
afterwards normalized per 1 min-trial by setting the mean per
channel to zero and the Frobenius norm across all channels to
one.

C. Performance Evaluation

1) Testing Procedure: To investigate the influence of differ-
ent variables such as group size, amount of training data, and
number of channels, we perform Monte-Carlo experiments in
which we fix 2 variables to a default value, and perform a sweep
on the third one. 50 Monte Carlo runs are used for each value in

the sweep. Possible interactions between these 3 variables will
be investigated ad hoc (see Section V-D). The default values of
the different variables are 40 min of training data, 64 channels,
and using all subjects. In the speech case, this means that the 64
channels corresponding to the 64-channel BioSemi system of
the video dataset are chosen from the 128-channel EEG system
of the speech dataset. As such, the baseline values between the
speech and video datasets are the same. When 40 min of training
are selected, the rest of the trials are split into 25% validation set
(for hyperparameter estimation, see Section IV-D-2) and 75%
test set. Per Monte Carlo run, the training trials are randomly
sampled from all available trials. When varying the group size
or number of channels, the chosen group or channels are sim-
ilarly randomly changed between Monte Carlo runs. The same
training-validation-test set split per Monte Carlo run is used
for all methods, such that the results are directly comparable
between methods.

The test window length, over which the correlation perfor-
mance metrics below are computed, is 60 s.

2) Evaluation Metrics: We consider two different evaluation
metrics to compare the different methods: the inter-subject
correlation (ISC) and stimulus correlation (SC). All evaluation
metrics are schematically explained in Fig. 2.

a) Inter-subject correlation (ISC): GCCA is often used
to quantify the group attention to a specific natural stimulus by
using the ISC as a proxy for attentional engagement [5], [6], [7],
[8], [13]. This ISC is defined as the average pairwise correlation
coefficient between the GCCA-decoded EEG recordings of the
different subjects, where the Pearson correlation coefficient
ρ(x,y) between two zero-mean one-dimensional time signals
x ∈ RT and y ∈ RT is defined as:

ρ(x,y) =
xTy

||x||2 ||y||2
.

Given the zero-mean one-dimensional projected EEG signals
z
(q)
k = Xkw

(q)
k ∈ RT where w

(q)
k denotes the qth column of

the (SI-)GCCA decoder Wk (or of W in the case of corrCA),
the ISC for component q is thus defined as:

ISC(q) =
2

K(K − 1)

K−1∑
k=1

K∑
l=k+1

ρ
(
z
(q)
k , z

(q)
l

)
. (16)

This ISC can be evaluated per window of a certain length on
the test set to compare the various methods. Note that even
for the stimulus-informed algorithms, at test time, we do not take
the stimulus into account but compare them with the stimulus-
unaware versions on exactly the same basis by only taking the
projected EEG signals z(q)

k into account.
b) Stimulus correlation (SC): Similarly to [25], [26],

we can also use (SI-)GCCA/corrCA as a preprocessing tool to a
priori enhance the SNR of the stimulus-following responses by
leveraging the group information, to then perform a traditional
backward stimulus correlation analysis on the projected EEG
signalsZk = XkWk ∈ RT×Q. We can assume the stimulus fea-
ture y ∈ RT to be one-dimensional here (see Section IV-B-1).
The SC can then be found by first training a least-squares decoder
dk ∈ RQLd from the time-lagged (using Ld additional time
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Fig. 2. To compare the different methods, we use three evaluation metrics: one individual metric that quantifies the synchrony between each
individual GCCA-decoded signal and the stimulus (i.e., the individual stimulus correlation SCk per subject k), and two group metrics that quantify
the synchrony between the group summary GCCA-decoded signal and the stimulus (i.e., the stimulus correlation SCavg on the average subspace
signal) and the average synchrony between GCCA-decoded EEG signals (i.e., the inter-subject correlation (ISC)).

lags) projected EEG signals Z̃k ∈ RT×QLd to the stimulus y.
As explained in [15], this decoder can be found by solving the
normal equations:

dk =
(
Z̃T

kZ̃k

)−1

Z̃T
ky. (17)

The SC for subject k can then be evaluated per window of a
certain length on the test set by first applying the (SI-)GCCA
decoders as a dimensionality reduction/preprocessing step and
then applying the stimulus decoder:

SCk = ρ
(
y, Z̃kdk

)
. (18)

While (18) contains the per-subject SCk, we can also evaluate
the overall SC across all subjects based on the subspace signal
S = 1

K

∑K
k=1 XkWk defined as the average projected EEG

signal (similar to (3)), which then acts as the summary signal.
Using a decoder

davg =
(
S̃TS̃

)−1

S̃Ty (19)

trained on the time-lagged average subspace signal S̃ ∈
RT×QLd of the training set, the resulting stimulus correlation
SCavg then represents a proxy for the group attention:

SCavg = ρ
(
y, S̃davg

)
. (20)

These stimulus decoders (17) and (19) are trained on the same
data (i.e., the training set) on which the (SI-)GCCA/corrCA de-
coders are trained. That means the (SI-)GCCA/corrCA decoders
are first applied to the training set, after which the decoders in
(17) and (19) can be trained.

3) Significance Level Computation: The significance levels
of the ISC and SC are computed using a random permutation

test, where all correlation between the data is removed by
randomly permuting all trials of the different subjects w.r.t.
each other or randomly permuting the (projected) EEG and
stimulus trials w.r.t. each other. Firstly, 50 Monte Carlo runs are
performed in which the 40 training trials are randomly selected
and the GCCA and stimulus decoders are trained. At test time,
for each Monte Carlo run, 20 random permutations of the test
trials are conducted, leading to a total of 1000 resamplings to
determine the null distribution of the ISC and SC (i.e., when all
correlated patterns are removed). From these null distributions,
the 5%-significance level can then be computed and is the same
for every algorithm. This significance level of the correlations
is mainly determined by the window length (60 s) and
the number of subjects/group size (which is varied from 2 to the
maximal number of subjects in the dataset) used to compare the
correlation.

D. Decoder Setup

1) Filter Design: In both the speech and video case, the neu-
ral decoders are modeled using a spatiotemporal filter that lin-
early combines the different EEG channels on different time lags
(see Section II-A). The number of time lags L is chosen equal to
5, corresponding to an integration window of [−250, 250]ms
for speech, whereas in the video case, this corresponds to
[−66.7, 66.7]ms (in accordance with [13]).

The additional stimulus decoder to compute the SC in Sec-
tion IV-C-2-b is similarly modeled as a spatio-temporal decoder,
but where all time lags are now chosen post-stimulus, i.e., from 0
toLd − 1 after the current stimulus sample. In both cases, the in-
tegration window is chosen equal to [0,250]ms (post-stimulus),
corresponding to Ld = 3 in the speech case and Ld = 9 in the
video case, consistent with, e.g., [3], [14].
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In the SI-GCCA/-corrCA estimation, the stimulus represen-
tation is augmented with additional time-lagged copies to also
allow for temporal filtering (via V) at the stimulus side (includ-
ing compensation for the intrinsic delay between the stimulus
and EEG response), resulting in a Hankel matrixY. In the speech
case, the integration window is chosen equal to [−1.25, 0]s,
i.e., preceding the current sample (and response), resulting in
a Hankel matrix with P = 11 columns. In the video case, the
integration window is chosen consistent with [13] equal to
[−500, 0]ms, resulting in a Hankel matrix withP = 16 columns.

In the speech case, maximally Q = 32 components are ex-
tracted, whereas this is Q = 10 in the video case.

2) Hyperparameter Selection: The hyperparameter μ in the
GCCA (1) and corrCA (4) estimation problems, determining
the weight on the diagonal loading regularization of the neural
decoders, and the hyperparameter γ in the SI-GCCA (6) and
SI-corrCA (14) estimation problems, determining the weight
on the stimulus part, are selected based on the average ISC
on a validation set, independent from the training and test set.
The optimal hyperparameter is selected based on the maxi-
mal average ISC for the first component across the 1 min-
trials in the validation set. For μ, a sweep in the range of
{0, 10−5, 10−4.5, . . . , 105} is performed. For γ a sweep in the
range of {0, 10−2, 10−1.5, . . . , 108} is performed.

To not further complicate the hyperparameter search in the
speech case, in the SI-GCCA (6) and SI-corrCA (14) estimation
problems, the hyperparameter μ for diagonal loading is not
validated, but automatically (heuristically) determined using the
method suggested by Ledoit and Wolf [48]. In the video case,
the optimal validated μ from the GCCA problem is used in the
SI-GCCA problem, as the Ledoit-Wolf procedure did not lead
to satisfying results in this case.

V. RESULTS AND DISCUSSION

We compare GCCA/corrCA with and without diagonal load-
ing from Section II with the newly proposed stimulus-informed
counterparts from Section III both on the speech and video
dataset according to the experiment details from Section IV.
First, we consider only the speech dataset, varying three vari-
ables: the amount of available training data (Section V-A), the
group size (Section V-B), and the number of EEG channels
(Section V-C). In Section V-D, we investigate how the interaction
of these three variables can influence the comparison. While the
former experiments are driven from the perspective of using the
stimulus-informed version to help the estimation of the neural
decoders, in Section V-E, we take the alternative perspective of
using SI-GCCA to steer the estimation of components towards
the chosen stimulus representation.

In Section V-F, we then investigate and explain the perfor-
mance on the video dataset.

A. Amount of Training Data

In this experiment, we vary the amount of available training
data on the speech dataset from 1 min to 50 min while keeping the
other variables fixed, as explained in Section IV-C. Per amount

of training data, 50 Monte Carlo runs of randomly picking the
training trials are performed. Investigating different (smaller)
amounts of training data is especially relevant, for example, in
a time-adaptive context, when the decoder has to be updated
regularly to cope with the non-stationarities in the data [4].
Fig. 3(a-i) shows the ISC as a function of the amount of training
data only for the first component, whereas Fig. 3(a-ii) shows
the ISC per component when using 15 min of training data.
Fig. 3(a-iii) shows the SCavg of the average decoded subspace
S as a function of the amount of training data when using
all Q = 32 components. The no regularization (‘noReg’) case
refers to μ = 0 in (1) (for GCCA) and (4) (for corrCA), whereas
the regularized case (‘reg’) refers to the case with μ selected
based on the validation set performance.

A first important observation from Fig. 3(a-i), and from Fig. 3
in general is that significant ISCs can be obtained using data-
driven group decoding algorithms. This shows that synchronized
stimulus-following responses across subjects exist and can be
decoded. The latter has already been established in other studies
on neural responses to natural stimuli [5], [6], [8], and the ISC
values in Fig. 3 are in line with those observed in other studies.
In general, ISC and SC values are typically low because of the
very low SNR of the stimulus-following neural responses w.r.t.
the background EEG activity.

From Fig. 3(a-i), we learn that SI-GCCA outperforms GCCA,
especially when a smaller amount of training data is available.
Firstly, it can be seen that traditional GCCA without any reg-
ularization or side-information heavily suffers from overfitting
in this case: only when more than 35 min of training data are
available, a significant ISC is found. With diagonal loading,
this overfitting effect can be counteracted by using the prior
information that norms of the neural decoders should be limited,
leading to a significant ISC already with 5 min of training data.
However, a smarter way of introducing side information seems
to be using the stimulus as proposed in the SI-GCCA algorithm:
especially for smaller amounts of training data, this outperforms
GCCA, leading to significant ISCs for 3 min of training data.
Note that from a numerical perspective, the �2-norm regular-
ization and stimulus information are different: in the former, no
additional parameters need to be estimated when using this prior
information, whereas in SI-GCCA, additional parameters are
introduced in the problem. When increasing the amount of train-
ing data, the difference between SI-GCCA and GCCA versions
becomes smaller as the additional side-information introduced
by the stimulus is outweighed by the large amount of training
data, effectively compensating for the high dimensionality of the
problem.

Another effective way of coping with the smaller amount of
training data is by drastically decreasing the dimensionality of
the estimation problem as in the (SI-)corrCA problems. How-
ever, there seems to be no additional benefit from the SI-corrCA
method w.r.t. corrCA with diagonal loading for extremely low
amounts of training data. The corrCA regularization technique
proves to be very effective for very low amounts of training
data: below 10 min, it outperforms SI-GCCA. However, the flip
side is that the performance quickly saturates when the amount
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Fig. 3. (-i) The ISC as a function of the amount of training data (a-i), group size (b-i), and number of channels (c-i) for the first component on
the speech data, when using 64 channels and all 19 subjects (mean ± standard deviation across runs). (a-i) For smaller amounts of training data,
the SI-GCCA algorithm outperforms the GCCA algorithms, whereas the corrCA versions perform best for extremely low amounts of training data.
(b-i) The stimulus-informed versions outperform the uninformed traditional versions for smaller group sizes. (c-i) GCCA clearly overfits without any
regularization. (-ii) The ISC across components, for 15 min of training data (a-ii), group size 5 (b-ii), and 38 (random) channels (c-ii), showing mainly
an effect of the inclusion of the stimulus on the most significant components. (-iii) The SCavg of the average subspace with Q = 32 components as
a function of the amount of training data (a-iii), group size (b-iii), and number of channels (c-iii), showing how the stimulus information leads to a
better preprocessor (a-iii and b-iii) and again how GCCA without any regularization overfits when using many EEG channels (c-iii).

of training data increases. (SI-)corrCA clearly suffers from its
inability to model subject differences w.r.t. (SI-)GCCA, leading
to vastly lower ISCs.

Fig. 3(a-ii) additionally shows that SI-GCCA mainly boosts
the ISC for the most significant components, whereas in
(SI-)corrCA, more significant components can be found - the
ISC is more spread out. In principle, the components cannot be
compared between methods one-to-one, as they might represent
different activities and only jointly form the basis for the sub-
space. Therefore, Fig. 3(a-iii) makes it easier to compare across
different components, as here the average subspaces across

methods are compared in terms of their SCavg. As expected
because of the design of the SI-GCCA method, it is more
effective as a preprocessing tool for stimulus decoding, yielding
higher stimulus correlations.

B. Group Size

In this experiment, we vary the group size from 2 to 19 on the
speech dataset while keeping the other variables fixed. Similarly
as before, 50 Monte Carlo runs of randomly picking the training
trials and the group of subjects for a specific group size are
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performed. This experiment emulates situations where the group
size is limited.

Fig. 3(b-i) shows an even clearer effect of the stimulus infor-
mation w.r.t. the uninformed counterparts when the group size is
limited, not only for SI-GCCA but now also for SI-corrCA. The
stimulus side-information effectively compensates when less
information is available due to a smaller group size, leading to a
significant5 ISC already for 3 subjects in the case of SI-GCCA
and only a minor decrease in ISC. Moreover, the corrCA variants
are now outperformed each time by a GCCA counterpart, as
sufficient (40 min) training data is available (see Fig. 3(a-i)).

In Fig. 3(b-ii), it can again be seen that the stimulus infor-
mation mainly boosts the most significant components, while
SI-GCCA/SI-corrCA are also more effective preprocessing tools
w.r.t. the stimulus-uninformed traditional versions, as seen in
Fig. 3(b-iii).

C. Number of Channels

In this experiment, we vary the number of channels from 2
to 128 in steps of 9 on the speech dataset. Similarly as before,
50 Monte Carlo runs of randomly picking the training trials
and the EEG channels (randomly chosen) for a specific number
of channels are performed. As such, we vary the number of
parameters to be estimated and the available information.

Fig. 3(c-i) and 3(c-iii) very clearly show the effect of over-
fitting on the GCCA method when the number of channels
increases, when not using any regularization method or side-
information. However, there seems to be no difference between
the stimulus-informed and -uninformed (but regularized with
diagonal loading) versions in Fig. 3(c-i) and 3(c-ii) when varying
the number of channels. While SI-GCCA results in a slight
improvement w.r.t. GCCA for the SC (Fig. 3(c-iii)), the stimulus
seems to not help in this situation in terms of the ISC, especially
when the other variables (amount of training data and group
size) are equal to the (relatively large) default values. However,
in Section V-D, we investigate what happens when these three
variables interact, and we will show that the number of channels
can have an influence when less ideal variable values are used.

D. Interaction of Variables

In the previous experiments, only one variable is varied each
time, while the other variables are taken constant at their default
values as explained in Section IV-C. As such, the previous results
are, in a certain sense, still quite conservative, as two of the
three variables are each time taken to be quite ideal in the sense
that they already lead to data-rich settings, even when the third
variable is set to a low value. In this section, we explore how
these variables interact and influence the comparison by taking
less ideal values for all three variables, which can easily occur
in a practical application. More specifically, as a representative
example, we choose the amount of training data equal to 15 min,
the group size equal to 6, and vary the number of channels from
2 to 65 in steps of 9 on the speech dataset.

5Note that the significance level decreases with an increasing group size, as
when more subjects are available, more pairwise correlations are averaged in
the ISC (16), suppressing more potential spurious correlations.

Fig. 4. Both SI-GCCA and SI-corrCA clearly outperform their unin-
formed counterparts across various numbers of channels when only 15
min of training data and 6 subjects are available (first component).

Fig. 4 shows how this interaction between variables favors
even more the stimulus-informed versions w.r.t. the stimulus-
uninformed GCCA variants across multiple numbers of chan-
nels. Only when using the stimulus, a significant ISC can be
obtained when using more than 30 channels. Moreover, similarly
to small group sizes in Fig. 3(b-i), SI-corrCA substantially out-
performs corrCA with diagonal loading. This particular instance
showcases how in non-ideal, practical use cases, where the
amount of training data and the group size is limited, our newly
proposed SI-GCCA/corrCA algorithms can lead to a substantial
benefit.

E. Steering the GCCA Estimation

In Sections V-A to V-D, we have shown how SI-GCCA is
superior when the available information to estimate the cor-
related components is limited, e.g., because the amount of
training data or group size is limited. Interpreted broadly (not
numerically), SI-GCCA can be seen as a task-informed regu-
larization technique that allows to introduce additional avail-
able information when estimating correlated components from
stimulus-synchronized EEG activity. In this section, we want
to put forward an alternative interpretation of SI-GCCA, i.e.,
using the stimulus to steer the estimation of the correlated
components towards the stimulus. This alternative perspective
connects with employing (SI-)GCCA, e.g., as a preprocessor
for stimulus decoding [26] or to use the ISC as a proxy for
attentional engagement to the content of one particular stimulus,
for example, the teacher’s voice in a classroom [5].

From Fig. 3(c-i) and 3(c-iii), it can already be seen that for a
similar ISC, SI-GCCA can still lead to higher SC w.r.t. GCCA.
This already indicates that while the extracted components per
subject are almost equally well correlated with one another,
the ones extracted by SI-GCCA are still more related to the
stimulus (feature) than for GCCA, in other words, SI-GCCA
steers these components more towards the stimulus. Whereas
Fig. 3(c-iii) shows only the SC for the average subspace, we
further investigate whether this steering behavior is also present
on an individual level, per component and subject. Therefore,
we more closely compare SI-GCCA and GCCA with diagonal
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Fig. 5. (a) The ISC between SI-GCCA and GCCA with diagonal load-
ing is very similar across components when using 40 min of training
data, all 19 subjects, and the default 64 channels. Mostly for components
6 to 8, SI-GCCA leads to a higher SCavg than GCCA. (b) For all individ-
ual subjects, the SC when using the first 11 components extracted with
(SI-)GCCA is higher for SI-GCCA than GCCA (Wilcoxon signed-rank
test: n = 19, p-value < 0.001). This effect is even more amplified when
working with the 11-dimensional average subspace.

loading for 40 min of training data, using all 19 subjects and the
default 64 EEG channels.

As could be seen already in Fig. 3(a-i) for the default settings
and is now confirmed in Fig. 5(a), especially for the most
significant components, there is hardly any difference in terms of
ISC. When summing the ISCs across all components, GCCA and
SI-GCCA lead to the same cumulative ISC of 0.335, and no sig-
nificant difference can be found across components (Wilcoxon
signed rank test, n = 32, p-value= 0.24). However, when we
have a look at the SC per individual component in Fig. 5(a),
SI-GCCA almost always leads to a higher or comparable SC than
GCCA, even when the ISC is lower (e.g., for component 4, 5, 6).
This is specifically noticeable for components 6 to 8. Moreover,
in Fig. 5(b), we show the SC when using the 11-dimensional
subspace (all components beyond the 11th are not significant
in Fig. 5(a)) from (SI-)GCCA, per individual subject and also
for the average subspace. For all subjects, the SC is higher for
the SI-GCCA method compared to the GCCA method, showing
a significant improvement across subjects (Wilcoxon signed-
rank test: n = 19, p-value < 0.001). Furthermore, this effect is
amplified when using the average subspace. This shows how
SI-GCCA can also be used to steer the correlated components
to be more correlated with the stimulus and shows its benefit as
a preprocessor to boost the SNR before stimulus decoding, both
on an individual and group level.

Fig. 6. (a) The ISC as a function of group size with 40 min of training
data and 64 EEG channels for the video dataset. There is no benefit
from the stimulus-informed version. (b) There is hardly any difference
when comparing the ISC between SI-GCCA and GCCA across com-
ponents for group size 4. However, SI-GCCA clearly leads to a higher
SCavg using increasing subspace dimension, showing its capability to
steer the estimation of the correlated components towards the stimulus
representation.

F. Analysis of Video Data With Object-Based Optical
Flow and the Effect of the Specific Stimulus
Representation

In this section, we evaluate and compare SI-GCCA with
GCCA on the video dataset.

In Fig. 6(a), the ISC is shown as a function of group size
when using 40 min of training data and all 64 EEG channels.
From Fig. 3(b-i), we would expect from the speech dataset
that the stimulus information would especially help for group
sizes below 10. However, Fig. 6(a) shows hardly any difference
between SI-GCCA and GCCA, indicating that the stimulus does
not improve the estimation of the correlated components (but
also does not deteriorate it). An explanation can be found in Yao
et al. [13], where it is shown that the object-based optical flow
only explains 6.9% of the variance present in the correlated com-
ponents across the EEG’s of the different subjects. A large pro-
portion of the variance in the stimulus-related neural responses is
thus not yet explained, such that using this specific video feature
in SI-GCCA has only a minor effect on the estimated correlated
components in terms of maximizing the ISC. To strengthen this
conclusion, we have performed a similar experiment as in [13]
to quantify the variance explained in the GCCA components
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for the speech dataset when using the speech envelope as a
feature. When regressing out the speech envelope per subject
and re-estimating GCCA (more details in [13]), we find that the
speech envelope explains around 40.6% of all correlated activity,
explaining why SI-GCCA performs much better on the speech
dataset. This observation entails an important limitation when
using our proposed SI-GCCA method: its impact is bound to the
specific chosen stimulus representation(s).

However, even when the stimulus representation does not ex-
plain much of the correlated neural (stimulus-related) activity as
is the case here for object-based optical flow in the video dataset,
SI-GCCA can still be used to steer the correlated components
towards that specific stimulus representation. We highlight this
point by comparing the ISC on the video dataset for group
size 4 with the SCavg across all components. While Fig. 6(b)
shows hardly any difference in ISC per individual correlated
components, the subspaces of increasing dimension are clearly
much more related to the object flow feature, already starting
from a one-dimensional subspace. This improved SC does not
reduce the correlation across subjects, as the ISC remains the
same between both methods. This shows that SI-GCCA extracts
equally correlated components as GCCA (across subjects), but
the former extracts components that better capture the temporal
dynamics in the optical flow related to the moving object in the
video.

VI. CONCLUSION

In this paper, we proposed a new algorithm for the group
analysis of stimulus-following neural responses within a group
of people attending to the same natural stimulus. Our pro-
posed framework allows to take the stimulus itself into account
when estimating the correlated components across subjects with
GCCA and its subject-generic variant corrCA. This stimulus-
informed GCCA framework can still be solved as a GEVD,
inheriting this attractive property from MAXVAR-GCCA.

We compared our newly proposed SI-GCCA algorithms with
the traditional stimulus-uninformed versions on a speech and
video dataset, using the speech envelope and object-based op-
tical flow as exemplary stimulus representations. We demon-
strated the superiority of using the stimulus as side-information
when the amount of training data or group size is limited, even
more so when these different variables interact, also with the
number of channels. This shows its practical relevance, for ex-
ample, in situations where the training set size is limited, e.g., in a
context of time-adaptive, online processing, or when the group
size is limited, e.g., as determined by the application. Using
the video dataset, we showed that a limitation of SI-GCCA,
besides the requirement of having access to the stimulus, is its
dependency on the specific stimulus representation.

Besides using SI-GCCA to introduce the stimulus as valuable
side-information to robustify the estimation of correlated com-
ponents across a group of subjects when the available estimation
data is a priori limited, it can also be used to steer the correlated
components explicitly in the direction of the stimulus (features).
To this end, we showed that a higher stimulus correlation can

be obtained when using SI-GCCA versus the traditional unin-
formed GCCA, without any significant reduction in the ISC.

To sum up, the proposed SI-GCCA algorithm can be em-
ployed for various purposes in the group decoding of stimulus-
following neural responses, e.g., to avoid overfitting and com-
pensate for limited available information, or to steer the design of
the neural decoders towards a specific stimulus representation.
As such, it can enable various applications, ranging from more
fundamentally-oriented (e.g., preprocessing and dimensionality
reduction) to application-specific (e.g., quantifying attention in
the classroom).

REFERENCES

[1] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a
review,” Sensors, vol. 12, no. 2, pp. 1211–1279, 2012.

[2] F. Lotte et al., “A review of classification algorithms for EEG-based brain–
computer interfaces: A 10 year update,” J. Neural Eng., vol. 15, no. 3, 2018,
Art. no. 031005.

[3] S. Geirnaert et al., “Electroencephalography-based auditory attention
decoding: Toward neurosteered hearing devices,” IEEE Signal Process.
Mag., vol. 38, no. 4, pp. 89–102, Jul. 2021.

[4] S. Geirnaert, T. Francart, and A. Bertrand, “Time-adaptive unsuper-
vised auditory attention decoding using EEG-based stimulus reconstruc-
tion,” IEEE J. Biomed. Health Inform., vol. 26, no. 8, pp. 3767–3778,
Aug. 2022.

[5] A. T. Poulsen, S. Kamronn, J. P. Dmochowski, L. C. Parra, and L. K.
Hansen, “EEG in the classroom: Synchronised neural recordings during
video presentation,” Sci. Rep., vol. 7, 2017, Art. no. 43916.

[6] J. P. Dmochowski, P. Sajda, J. Dias, and L. C. Parra, “Correlated com-
ponents of ongoing EEG point to emotionally laden attention - a possible
marker of engagement?,” Front. Hum. Neurosci., vol. 6, 2012, Art. no. 112.

[7] J. P. Dmochowski, M. A. Bezdek, B. P. Abelson, J. S. Johnson, E. H.
Schumacher, and L. C. Parra, “Audience preferences are predicted by
temporal reliability of neural processing,” Nat. Commun., vol. 5, no. 1,
2014, Art. no. 4567.

[8] J. J. Ki, S. P. Kelly, and L. C. Parra, “Attention strongly modulates reli-
ability of neural responses to naturalistic narrative stimuli,” J. Neurosci.,
vol. 36, no. 10, pp. 3092–3101, 2016.

[9] J. P. Dmochowski, J. J. Ki, P. DeGuzman, P. Sajda, and L. C. Parra,
“Extracting multidimensional stimulus-response correlations using hybrid
encoding-decoding of neural activity,” NeuroImage, vol. 180, pp. 134–146,
2018.

[10] J. Vanthornhout, L. Decruy, and T. Francart, “Effect of task and attention
on neural tracking of speech,” Front. Neurosci., vol. 13, 2019, Art. no. 977.

[11] J. Belo, M. Clerc, and D. Schön, “EEG-Based auditory attention detection
and its possible future applications for passive BCI,” Front. Comput. Sci.,
vol. 3, 2021, Art. no. 661178.

[12] M. Nentwich et al., “Semantic novelty modulates neural responses to visual
change across the human brain,” Nat. Commun., vol. 14, no. 1, 2023,
Art. no. 2910.

[13] Y. Yao, A. Stebner, T. Tuytelaars, S. Geirnaert, and A. Bertrand, “Identi-
fying temporal correlations between natural single-shot videos and EEG
signals,” J. Neural Eng., vol. 21, no. 1, 2024, Art. no. 016018.

[14] J. A. O’Sullivan et al., “Attentional selection in a cocktail party environ-
ment can be decoded from single-trial EEG,” Cereb. Cortex, vol. 25, no. 7,
pp. 1697–1706, 2014.

[15] S. Geirnaert, T. Francart, and A. Bertrand, “Unsupervised self-adaptive
auditory attention decoding,” IEEE J. Biomed. Health Inform., vol. 25,
no. 10, pp. 3955–3966, Oct. 2021.

[16] J. Vanthornhout, L. Decruy, J. Wouters, J. Z. Simon, and T. Francart,
“Speech intelligibility predicted from neural entrainment of the speech
envelope,” J. Assoc. Res. Otolaryngol., vol. 19, no. 2, pp. 181–191, 2018.

[17] I. Davidesco, C. Matuk, D. Bevilacqua, D. Poeppel, and S. Dikker, “Neuro-
science research in the classroom: Portable brain technologies in education
research,” Educ. Researcher, vol. 50, no. 9, pp. 649–656, 2021.

[18] V. Delvigne, H. Wannous, J.-P. Vandeborre, L. Ris, and T. Dutoit, “At-
tention estimation in virtual reality with EEG based image regression,” in
2020 IEEE Int. Conf. Artif. Intell. Virtual Reality, 2020, pp. 10–16.

Authorized licensed use limited to: KU Leuven University Library. Downloaded on February 17,2026 at 10:52:44 UTC from IEEE Xplore.  Restrictions apply. 



GEIRNAERT et al.: STIMULUS-INFORMED GENERALIZED CANONICAL CORRELATION ANALYSIS FOR GROUP ANALYSIS 983

[19] A. Roebben, N. Heintz, S. Geirnaert, T. Francart, and A. Bertrand, “‘Are
you even listening?’ - EEG-based detection of absolute auditory attention
to natural speech,” J. Neural Eng., vol. 21, no. 3, 2024, Art. no. 036046.

[20] S. J. Aiken and T. W. Picton, “Human cortical responses to the speech
envelope,” Ear Hear., vol. 29, no. 2, pp. 139–157, 2008.

[21] N. Ding and J. Z. Simon, “Neural coding of continuous speech in auditory
cortex during monaural and dichotic listening,” J. Neuriophysiol., vol. 107,
no. 1, pp. 78–89, 2012.

[22] N. Mesgarani and E. F. Chang, “Selective cortical representation of
attended speaker in multi-talker speech perception,” Nature, vol. 485,
pp. 233–236, 2012.

[23] D. D. Wong, S. A. Fuglsang, J. Hjortkjær, E. Ceolini, M. Slaney, and
A. de Cheveigné, “A comparison of regularization methods in forward
and backward models for auditory attention decoding,” Front. Neurosci.,
vol. 12, 2018, Art. no. 531.

[24] S. Miran, A. Presacco, J. Z. Simon, M. C. Fu, S. I. Marcus, and B. Babadi,
“Dynamic estimation of auditory temporal response functions via state-
space models with gaussian mixture process noise,” PLoS Comput. Biol.,
vol. 16, no. 8, 2020, Art. no. e1008172.

[25] A. de Cheveigné et al., “Multiway canonical correlation analysis of brain
data,” NeuroImage, vol. 186, no. Oct., 2018, pp. 728–740, 2019.

[26] G. M. Di Liberto, G. Marion, and S. A. Shamma, “Accurate decod-
ing of imagined and heard melodies,” Front. Neurosci., vol. 15, 2021,
Art. no. 673401.

[27] J. D. Carroll, “Generalization of canonical correlation analysis to three of
more sets of variables,” in Proc. 76th Annu. Conv. Amer. Psychol. Assoc.,
1968, vol. 3, pp. 227–228.

[28] J. R. Kettenring, “Canonical analysis of several sets of variables,”
Biometrika, vol. 58, no. 3, pp. 433–451, 1971.

[29] H. Hotelling, “Relations between two sets of variates,” Biometrika, vol. 28,
pp. 321–377, 1936.

[30] L. Chen et al., “Adaptive asynchronous control system of robotic arm
based on augmented reality-assisted brain–computer interface,” J. Neural
Eng., vol. 18, no. 6, 2021, Art. no. 066005.

[31] A. de Cheveigné, D. D. Wong, G. M. Di Liberto, J. Hjortkjær, M. Slaney,
and E. C. Lalor, “Decoding the auditory brain with canonical component
analysis,” NeuroImage, vol. 172, pp. 206–216, 2018.

[32] Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Frequency recogni-
tion in SSVEP-based BCI using multiset canonical correlation analysis,”
Int. J. Neural Syst., vol. 24, no. 04, 2014, Art. no. 1450013.

[33] S. Geirnaert, T. Francart, and A. Bertrand, “Stimulus-informed generalized
canonical correlation analysis of stimulus-following brain responses,” in
2023 31st Eur. Signal Process. Conf., 2023, pp. 1000–1004.

[34] M. Sørensen, C. I. Kanatsoulis, and N. D. Sidiropoulos, “Generalized
canonical correlation analysis: A subspace intersection approach,” IEEE
Trans. Signal Process., vol. 69, pp. 2452–2467, 2021.

[35] X. Fu et al., “Efficient and distributed algorithms for large-scale general-
ized canonical correlations analysis,” in Proc. IEEE 16th Int. Conf. Data
Mining, 2016, pp. 871–876.

[36] P. Horst, “Generalized canonical correlations and their application to
experimental data,” J. Clin. Psychol., 1961, no. 14.

[37] C. Hovine and A. Bertrand, “Distributed MAXVAR: Identifying common
signal components across the nodes of a sensor network,” in Proc. 29th
Eur. Signal Process. Conf., 2021, pp. 2159–2163.

[38] A. Hassani, A. Bertrand, and M. Moonen, “GEVD-Based low-rank ap-
proximation for distributed adaptive node-specific signal estimation in
wireless sensor networks,” IEEE Trans. Signal Process., vol. 64, no. 10,
pp. 2557–2572, May 2016.

[39] J. Vía, I. Santamaría, and J. Pérez, “A learning algorithm for adaptive
canonical correlation analysis of several data sets,” Neural Netw., vol. 20,
no. 1, pp. 139–152, 2007.

[40] S. Geirnaert, Y. Yao, T. Francart, and A. Bertrand, “SI-GCCA MATLAB
toolbox and experiments,” 2024. [Online]. Available: https://github.com/
AlexanderBertrandLab/si-gcca

[41] M. P. Broderick, A. J. Anderson, G. M. Di Liberto, M. J. Crosse, and E.
C. Lalor, “Electrophysiological correlates of semantic dissimilarity reflect
the comprehension of natural, narrative speech,” Curr. Biol., vol. 28, no. 5,
pp. 803–809.e3, 2018.

[42] M. P. Broderick, A. J. Anderson, G. M. Di Liberto, M. J. Crosse, and E.
C. Lalor, “Data from: Electrophysiological correlates of semantic dissim-
ilarity reflect the comprehension of natural, narrative speech,” Feb. 2019.
[Online]. Available: https://doi.org/10.5061/dryad.070jc

[43] Y. Yao, A. Stebner, T. Tuytelaars, S. Geirnaert, and A. Bertrand, “Video-
EEG encoding-decoding dataset KU Leuven,” Jan. 2024. [Online]. Avail-
able: https://zenodo.org/doi/10.5281/zenodo.10512413

[44] G. M. Di Liberto, J. A. O’Sullivan, and E. C. Lalor, “Low-frequency
cortical entrainment to speech reflects phoneme-level processing,” Curr.
Biol., vol. 25, no. 19, pp. 2457–2465, 2015.

[45] C. Brodbeck, L. E. Hong, and J. Z. Simon, “Rapid transformation from
auditory to linguistic representations of continuous speech,” Curr. Biol.,
vol. 28, no. 24, pp. 3976–3983.e5, 2018.

[46] M. Gillis, J. Vanthornhout, J. Z. Simon, T. Francart, and C. Brodbeck,
“Neural markers of speech comprehension: Measuring EEG tracking of
linguistic speech representations, controlling the speech acoustics,” J.
Neurosci., vol. 41, no. 50, pp. 10316–10329, 2021.

[47] X. Zhang et al., “Leading and following: Noise differently affects seman-
tic and acoustic processing during naturalistic speech comprehension,”
NeuroImage, vol. 282, 2023, Art. no. 120404.

[48] O. Ledoit and M. Wolf, “A well-conditioned estimator for large-
dimensional covariance matrices,” J. Multivariate Anal., vol. 88, no. 2,
pp. 365–411, 2004.

Authorized licensed use limited to: KU Leuven University Library. Downloaded on February 17,2026 at 10:52:44 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/AlexanderBertrandLab/si-gcca
https://github.com/AlexanderBertrandLab/si-gcca
https://doi.org/10.5061/dryad.070jc
https://zenodo.org/doi/10.5281/zenodo.10512413


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


