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Abstract
Objective. Electroencephalography (EEG) is a widely used technology for recording brain activity
in brain-computer interface (BCI) research, where understanding the encoding-decoding
relationship between stimuli and neural responses is a fundamental challenge. Recently, there is a
growing interest in encoding-decoding natural stimuli in a single-trial setting, as opposed to
traditional BCI literature where multi-trial presentations of synthetic stimuli are commonplace.
While EEG responses to natural speech have been extensively studied, such stimulus-following EEG
responses to natural video footage remain underexplored. Approach.We collect a new EEG dataset
with subjects passively viewing a film clip and extract a few video features that have been found to
be temporally correlated with EEG signals. However, our analysis reveals that these correlations are
mainly driven by shot cuts in the video. To avoid the confounds related to shot cuts, we construct
another EEG dataset with natural single-shot videos as stimuli and propose a new set of
object-based features.Main results.We demonstrate that previous video features lack robustness in
capturing the coupling with EEG signals in the absence of shot cuts, and that the proposed
object-based features exhibit significantly higher correlations. Furthermore, we show that the
correlations obtained with these proposed features are not dominantly driven by eye movements.
Additionally, we quantitatively verify the superiority of the proposed features in a match-mismatch
task. Finally, we evaluate to what extent these proposed features explain the variance in coherent
stimulus responses across subjects. Significance. This work provides valuable insights into feature
design for video-EEG analysis and paves the way for applications such as visual attention decoding.

1. Introduction

Electroencephalography (EEG) is a non-invasive
technology to record the electrical activity of the brain
through electrodes attached to the scalp. Due to its
high temporal resolution, affordability, and portab-
ility, EEG has found extensive applications in brain-
computer interface (BCI) research. A key challenge
in BCIs is understanding the encoding-decoding rela-
tionship between stimuli and EEG responses. Early
approaches, e.g. the event-related potential (ERP)
approach [1], heavily relied on short synthetic sens-
ory stimuli, such as tone beeps or sudden visual
events. Participants were repeatedly presented with
the same synthetic stimulus, and the neural response

was obtained by averaging the EEG signals across tri-
als to deal with the low signal-to-noise ratio (SNR) of
EEG. Using synthetic stimuli leads to more determ-
inistic neural responses, such that averaging mul-
tiple EEG trials allows to remove the uncorrelated
background noise while retaining the neural sig-
nals of interest. However, such multi-trial paradigms
often lead to participant fatigue and are imprac-
tical for real-life applications involving natural con-
tinuous stimuli like audio and video footage that
emerge in everyday life applications, in which case
the stimuli are only presented once. Such natural set-
tings are often assumed in passive BCIs where the
goal is, e.g. to monitor attention or engagement [2,
3], to detect mental fatigue and workload [4], or
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to recognize emotions such as stress, surprise, and
fear [5]. Consequently, there has been a growing
need to develop new paradigms that allow to decode
neural responses to a natural stimulus in a single-
trial context. The challenge lies in the fact that the
stimulus-following responses are non-deterministic
(as opposed to ERPs), and that they are buried under
all kinds of EEG background noise, requiring more
advanced signal processing tools to decode them, in
particular sincemulti-trial averaging is not an option.
The latter implies that often a longer trial duration
is required in a single-trial setting, in order to obtain
sufficiently reliable decoding results.

Therefore, when working with natural single-
trial stimuli, two crucial elements are (1) a good
(feature) representation of the stimulus that cor-
relates well with the EEG and (2) an appropriate
model that captures the relationship between the
stimulus representation and the EEG response, while
removing background EEG. Extensive research has
been conducted on auditory-EEG analysis for natural
speech, where various useful speech representations
have been proposed, ranging from low-level features
such as the spectrogram [6] and speech envelope [7–
9], to high-level information such as phonemes [10]
and semantic context [11]. The most common mod-
els are linear models, which can be roughly categor-
ized into two groups: forward models and backward
models. Linear forward models assume that the EEG
signal consists of a stimulus response superimposed
to background EEG, where the former is typically
modelled as a convolution between a proper stimu-
lus representation (e.g. a speech envelope) and a so-
called temporal response function (TRF). The TRF
can be estimated using, e.g. least squares (LS), and
the EEG signals can be predicted from the audio fea-
tures using the estimated TRF [7, 10, 11]. Backward
models, on the other hand, reconstruct the stimu-
lus as a linear combination of (lagged) EEG channels
[8, 9]. A hybrid encoding-decoding model based on
canonical correlation analysis (CCA) was proposed
in [12], where linear transformations were applied
to both the speech envelope and the EEG signals
such that the latent representations were maximally
correlated. However, linear models have an inher-
ent limitation in capturing the nonlinear dynam-
ics of the brain. Moreover, using linear models also
makes the results very dependent on the handcrafted
feature engineering of the stimulus representation.
Therefore, deep learningmethods have been receiving
increasing attention in recent years [13]. For instance,
[14] decoded the auditory brain using deep learning-
based CCA, and in [15], a long short-term memory-
based model was proposed to discriminate whether
a pair of an EEG segment and speech envelope cor-
respond to each other or not. One direct application
of audio-EEG analysis is auditory attention decoding,

which opens the doors for advancing future techno-
logies such as neuro-steered hearing aids [16].

While there have been successful attempts to
decode natural audio from EEG, the decoding of nat-
ural video footage from EEG has received less atten-
tion. The high-dimensional nature of the video sig-
nals poses challenges in finding useful representa-
tions. A possible approach is to not explicitly take
the video stimulus into account in the modeling
and extract common EEG components across the
EEGs of multiple subjects watching the same video
using methods such as correlated component ana-
lysis (CorrCA) [17–20]. By construction, the EEG
responses that are coherent across subjects can only
be time-locked to the visual stimuli since only the
video stimuli is shared during all the EEG measure-
ments. However, the link between the extracted EEG
components and the video is unclear, making these
components not very interpretable, in particular in
regard towhich features in the video drive the correla-
tion. Alternatively, stimulus-aware algorithms such as
CCA can be used to analyze the encoding-decoding
relationship between the (specific features of) video
stimulus and individual EEG signals. In this case, the
design of relevant (low-dimensional) video features
becomes crucial. In previous studies, the mean velo-
city of pixels calculated from the optical flow and the
mean temporal derivative of pixel intensity (temporal
contrast) were shown to be correlated with individual
EEG signals, suggesting that they could be visual fea-
tures that elicit strong EEG responses [21, 22].

In this work, we argue that shot cuts, which refer
to sudden changes in the camera viewpoint or scene,
have a significant impact on stimulus-aware video-
EEG analysis, using previously proposed video fea-
tures, as well as on (stimulus-unaware) multi-subject
EEG analysis.Moreover, we recorded a newEEGdata-
set with subjects watching a set of single-shot videos
containing a single moving object (i.e. a person).
These single-shot single-object videos were specific-
ally chosen to avoid introducing confounds related to
shot cuts and to reduce the complexity of the stimuli.
We demonstrate that the previously proposed mean
velocity of pixels and temporal contrast are not rel-
evant enough to generate significant correlations in
the absence of shot cuts, and propose new object-
based versions of these features that aremore relevant,
leading to significantly higher correlations.Moreover,
we show that the EEG components obtained with the
new features are not dominantly driven by eye move-
ments, which are usually considered confounds. We
further demonstrate that the proposed features are of
better quality by their lower error rates in a match-
mismatch (MM) task. Finally, we perform a multi-
subject EEG analysis and calculate the proportion of
variance in the coherent stimulus responses explained
by the proposed features.
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The structure of the paper is outlined as fol-
lows: section 2 describes the experimental protocol
in detail. In section 3, we introduce the proposed
video features and review the mathematical tools that
we used in our analysis. The results are presented in
section 4, followed by further discussions in section 5.
Finally, in section 6, we draw conclusions based on
our findings.

2. Experiment

2.1. Subjects and stimuli
20 young, healthy participants were recruited (10
females) for this study. 14 single-shot videos (dur-
ation 202 s–463 s) showing a single moving person
during various activities (dancing, mime, acrobat-
ics, magic shows) were selected from YouTube, which
were then concatenated into two longer trials (dura-
tion 36 min and 35 min) in a sequence that ensured
diverse content, e.g. a dance performance followed
by a mime show and a magic show, to reduce parti-
cipants’ fatigue. Smooth transitions with cross-fading
effects were applied between the videos. 10 of the sub-
jects (5 females) watched an extra 24 min clip from
Mr Bean, which contains shot cuts distributed irreg-
ularly throughout the video, and which was used to
study the effect of shot cuts. For clarity, we will refer
the first dataset as the Single-Shot dataset, and the
second as theMrBean dataset. Unless mentioned oth-
erwise, the same processing steps are applied to both
datasets. A squared box that flashed once every 30 s
was encoded into the videos for synchronization. It
appeared outside of the original frames and was posi-
tioned in the top right corner of the screen. During
passive viewing, the flashing box was covered such
that it was not distractive. To avoid the confounds
introduced by audio, all the videos were muted dur-
ing the experiment. The study was approved by the
KULeuven Social and Societal Ethics Committee, and
before participating, all participants provided their
informed consent by signing a consent form.

2.2. Data acquisition and preprocessing
The EEG data of these subjects was recorded when
they were watching these videos. These experiments
were conducted in a quiet and dark room tominimize
potential distractions. The subjects were instructed to
watch the videos naturally, concentrate on the con-
tent, and minimize their own movements. The EEG
data was recorded with a biosemi activetwo system
at a sample rate of 2048 Hz. The participants wore a
64-channel EEG cap, and 4 electrooculogram (EOG)
sensors around the eyes were used to track eye move-
ments. Potential bad channels were carefully logged
during each session. A photo sensor for detecting the
light changes of the embedded flashing box was also
connected to the recorder to provide synchroniza-
tion information. The collected EEG data was first

segmented into different pieces corresponding to each
video based on the signal of the photo sensor.

The video preprocessing involved resampling to
30 Hz and resizing to 854× 480 pixels. Features were
extracted frame by frame as detailed in section 3.1.
Preprocessing of the EEG data was performed using
functions from the MNE-Python library [23], which
involved the following steps: (1) interpolating bad
channels; (2) re-referencing the data to the average
of all channels; (3) applying a high pass filter with a
cutoff frequency of 0.5 Hz; (4) removing power line
noise with a notch filter; (5) downsampling the data
to 30 Hz (to match the video frame rate) after proper
anti-aliasing filtering; and (6) regressing out the EOG
channels to reduce eye artifacts. The specifications of
the filters can be found in appendix A. Importantly,
the filters are zero phase and thus do not introduce
delays.

To avoid potential confounding effects caused by
the (cross-fading) transitions between consecutive
single-shot videos, the initial and final second of each
video, along with the corresponding EEG data, were
excluded from the analysis. Additionally, due to syn-
chronization issues for one subject in the Single-Shot
dataset, one of the single-shot videos was excluded for
all subjects, resulting in a dataset of 20 subjects with
63min of data each. Similarly, for theMrBean dataset,
the initial and final second of the data were discarded
to avoid any influence from video onset and termin-
ation. The MrBean dataset included 10 subjects, each
contributing 24 min of data.

3. Methods

In section 3.1, we explain the newly proposed video
feature that we use in the video-EEG analysis. To
quantify and identify the temporal coupling between
signals, we choose CCA in the context of stimulus-
aware video-EEG analysis, to find the correlation
between the individual EEG signals and the video fea-
tures (section 3.2), while usingmulti-set extensions of
CCA such as generalized canonical correlation ana-
lysis (GCCA) and CorrCA in the context of multi-
subject EEG analysis, to find the correlation between
EEG signals of multiple subjects watching the same
video (section 3.3). We briefly review these methods
and point out the links between their seemingly-
different original formulations. Sections 3.4–3.6
delve into the details of hyperparameters used in
these algorithms, evaluation metrics, and the inter-
pretation of obtained filter weights, respectively.
The code for extracting features, implementing
algorithms, and reproducing results can be found at:
https://github.com/YYao-42/Identifying-Temporal-
Correlations-Between-Natural-Single-shot-Videos-
and-EEG-Signals.

In the subsequent discussion, we consider the
C-channel EEG signals xn(t) ∈ RC recorded from N
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Figure 1. (a) A frame of a video that was used in our experiment. (b) We can obtain the bounding box and the segmentation
masks using Mask R-CNN. The area within the bounding box is in black. We overlay the segmentation masks on top of it, and the
color is related to the value of features.

subjects watching the same video stimulus, where t is
the time index, and n is an index that refers to a spe-
cific subject (n ∈ 1, . . .,N). The stimulus is represen-
ted by y(t) ∈ RDy , a Dy-dimensional time-dependent
feature extracted from the video, where the time index
t is the same as the time index in the EEG signals.
Without loss of generality, we assume that xn(t) and
y(t) are zero-mean, i.e. E{xn(t)}= 0 and E{y(t)}=
0. Furthermore, we assume the availability of T time
samples, leading to the data matrices Xn ∈ RT×C and
Y ∈ RT×Dy , where each row is a sample of the EEG
signal and the feature, respectively.

3.1. Video feature extraction
3.1.1. Optical flow and temporal contrast
In the limited literature on video-EEG analysis, it has
been observed that optical flow and temporal con-
trast can be correlated with EEG signals [21]. Optical
flow estimates the velocity vectors of pixels between
consecutive frames and can thus be used to capture
the motion information in videos. We applied the
Gunnar-Farneback Optical Flow algorithm imple-
mented in OpenCV to extract the flow vectors [24,
25], and computed the magnitude of each velo-
city vector |vm(z)|, where the subscript m denotes
the frame index and z denotes the pixel coordinate.
Temporal contrast is a low-level feature that is simply
defined as the absolute intensity changes between
consecutive frames, i.e. ∆Im(z) = |Im(z)− Im−1(z)|.
In [21], both types of features are averaged across all
pixels, resulting in a scalar value for each frame. We
refer to the average magnitude of velocity as AvgFlow
and the average intensity change as AvgTempCtr.

3.1.2. Newly proposed object-based features
In the previous approach of averaging over all pixels,
important spatial information is lost, making it
impossible to identify specific regions in a frame
that elicit strong neural responses. Additionally, treat-
ing all pixels equally may not accurately reflect the
attentional focus of the subject, as certain pixels,
such as those corresponding to moving objects, are
more likely to attract attention compared to the back-
ground,while the latter can still have a large impact on

optical flow or temporal contrast. Moreover, the scal-
ing of objects also influences the results. For example,
consider an object moving at a constant speed but
changing in scale. In this case, its contribution to the
result varies as the number of pixels changes, which is
not ideal for capturing the neural responses related
to movement perception. To overcome these limit-
ations, we propose a refined version that incorpor-
ates object segmentation. This approach involves seg-
menting the object(s) in each frame and calculating
the mean values only for the pixels belonging to the
object(s).

To perform object segmentation, we utilize Mask
R-CNN [26], a deep learning model designed for
object detection and segmentation in images. This
model consists of two branches: one branch returns
the bounding boxes of the detected objects, while the
other branch provides segmentation masks. The seg-
mentationmasks arematrices where each entry indic-
ateswhether a pixel belongs to an object (1) or not (0).
By feeding frames directly into the pre-trained Mask
R-CNN model, we obtain the segmentation masks,
which allow us to identify the pixels associated with
each object. An example is shown in figure 1.

With the obtained segmentationmasks, we select-
ively average the flow vectors and unsigned intensity
changes only over the pixels belonging to the iden-
tified object(s). In the multi-object case, one could
average over the union of all pixels across all objects,
or alternatively, normalize for each object separately
and then sum the per-object features. A pre-selection
of relevant objects could also be performedbefore fea-
ture fusion based on, e.g. the sizes of the bounding
boxes. To circumvent feature fusion, one could treat
objects separately in the analysis. Due to the many
additional degrees of freedom, the multi-object case
is beyond the scope of this paper and we focus on
the single-object case. This object-based version of
optical flow and temporal contrast is referred to as
ObjFlow and ObjTempCtr, respectively. A summary
of the feature definitions is given in table 1. By incor-
porating object segmentation, we can retain the spa-
tial information and stress more the regions that may
receive more attention and presumably elicit higher
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Table 1. Video features and definitions. Z andO denote the set of
all pixels and the set of pixels belonging to the object of interest,
respectively. |Z| and |O| represent the cardinality of the sets.
|vm(z)| is the magnitude of velocity.

Feature Abbreviation Definition

Average optical
flow [21]

AvgFlow 1
|Z|

∑
z∈Z |vm(z)|

Average temporal
contrast [21]

AvgTempCtr 1
|Z|

∑
z∈Z ∆Im(z)

Object-based
optical flow

ObjFlow 1
|O|

∑
z∈O |vm(z)|

Object-based
temporal contrast

ObjTempCtr 1
|O|

∑
z∈O∆Im(z)

neural responses, providing a more refined feature
representation. Note that this method compensates
for the variation in the number of pixels within the
object since the values are averaged over pixels of the
identified object.

3.2. Stimulus-aware video-EEG analysis: CCA
For conciseness, we drop the subscript n of the EEG
signals in this subsection, as the following analysis is
made per subject individually. CCA was proposed in
[27] as a method to find relations between two sets
of variables. Givenmulti-dimensional EEG signal x(t)
and video feature y(t), CCA computes filterswx ∈ RC

(on the EEG) and wy ∈ RDy (on the stimulus) that
maximize the Pearson correlation coefficient between
the filtered output signals (figure 2(a)). Therefore,
CCA can be formulated as the following optimization
problem:

maximize
wx,wy

E
{[
wT

xx(t)
][
wT

yy(t)
]}√

E
{
[wT

xx(t)]
2
}√

E
{[
wT

yy(t)
]2} .

(1)

The optimal wx and wy are called the first canon-
ical components, and the transformed signalswT

xx(t)
and wT

yy(t) are called the first canonical directions.
Here we assume the filters only act on the cur-
rent timestamp, but the formulation can be eas-
ily generalized to incorporate temporal information.
This can be accomplished by extending x(t) with
Lx − 1 time-lagged copies of x(t), such that it becomes
a CLx-dimensional vector, and extending y(t) with
Ly − 1 time lagged copies of y(t), resulting in a DyLy-
dimensional vector (similar for wx and wy). Such
extension can also compensate for the unknown time
lag between the stimulus and the EEG response.

Since the scaling of wx and wy does not affect
the objective function in (1), we can constrain the
canonical directions to have unit variance to simplify
the denominator. By denoting correlation matrices
Rxy = E{x(t)y(t)T} ∈ RC×Dy , Rxx = E{x(t)x(t)T} ∈
RC×C, and Ryy = E{y(t)y(t)T} ∈ RDy×Dy (which can

be estimated as 1
TX

TY, 1
TX

TX and 1
TY

TY, respect-
ively), (1) can be rewritten as a constrained optim-
ization problem:

maximize
wx,wy

wT
xRxywy

subject to wT
xRxxwx = 1,

wT
yRyywy = 1.

(2)

An extension of (2) in the multi-component
case is:

maximize
Wx,Wy

Tr
(
WT

xRxyWy

)
subject to WT

xRxxWx = IK,

WT
yRyyWy = IK,

(3)

where Tr(·) is the trace operator, K is the num-
ber of components, IK is the K ×K identity mat-
rix, and the k-th columns of Wx ∈ RC×K and Wy ∈
RDy×K are the k-th canonical components. The con-
straints require that the canonical directions of differ-
ent orders are uncorrelated to avoid trivial solutions.
It can be shown that (3) can bewritten in amore com-
pact form (up to a scaling factor in the solution) [28]:

maximize
W

Tr
(
WTRW

)
subject to WTDW= IK,

(4)

with

W=

[
Wx

Wy

]
, R=

[
Rxx Rxy

Ryx Ryy

]
, D=

[
Rxx 0
0 Ryy

]
.

(5)

From the Karush–Kuhn–Tucker (KKT) conditions,
we have the following set of equations:

RW=DWΛ, (6a)

WTDW= IK, (6b)

where Λ is a symmetric matrix containing the
Lagrange multipliers. By left multiplyingWT to both
sides of (6a) and making use of condition (6b),
it is obvious that maximizing the objective func-
tion corresponds to maximizing Tr(Λ). Therefore,
an optimal W can be obtained by solving (6a) as a
generalized eigenvalue decomposition (GEVD) prob-
lem, and the columns of W are the generalized eigen-
vectors (GEVC) corresponding to the top-K largest
generalized eigenvalues (GEVL).

3.3. Multi-subject EEG analysis
3.3.1. GCCA
Note that CCA only works for two views (in our
case x(t) and y(t)). When analyzing the correlation
between more than two views, e.g. jointly measur-
ing the correlation between EEG signals Xn of mul-
tiple subjects, it becomes necessary to extend CCA

5
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Figure 2. Conceptual illustrations of stimulus-aware video-EEG analysis using CCA and multi-subject EEG analysis using
(MAXVAR-)GCCA and CorrCA.

to accommodate multiple matrices as inputs. The
objective is now to find the per-subject filters Wn ∈
RC×K (on the EEG) such that the outputs are on
average maximally correlated. The stimulus is, in this
analysis, not explicitly taken into account. However,
the generalization of CCA is not unique and in this
work we choose MAXVAR-GCCA [29], which aims
to find linear transformations for different views
such that the transformed signals, on average, closely
approximate an unknown shared subspace S ∈ RT×K.
Mathematically, it is formulated as:

minimize
W1,...,WN,S

N∑
n=1

∥S−XnWn∥2F

subject to STS= IK,

(7)

where ∥ · ∥F denotes the Frobenius norm. Using the
KKT conditions, we can show that the solution to (7)
is also given by a GEVD problem that has a similar
form as (6a), but with a different content in the block
matrices [30]:

W=

W1

...
WN

 , R=

R11 · · · R1N
...

. . .
...

RN1 · · · RNN

 ,

D=


R11 0 · · · 0
0 R22 · · · 0
...

...
. . .

...
0 0 · · · RNN

 , (8)

with Rij =
1
TX

T
iXj, the cross-correlation matrix

between the EEGs of the two subjects when i ̸= j and
the autocorrelation matrix of subject i when i= j. An
optimalW is the horizontal stack of the GEVCs cor-
responding to the K largest GEVLs. Therefore, up to
a scaling factor in the solution, MAXVAR-GCCA is
equivalent to (4) with parameters defined as in (8),
which is a natural extension of CCA. The shared

subspace can be obtained directly from the KKT con-
ditions as

S=
N∑

n=1

XnWnΛ
−1. (9)

3.3.2. CorrCA
CorrCAwas proposed in [17], also for quantifying the
correlation between the neural data of multiple sub-
jects. A key difference between CorrCA and GCCA is
that CorrCA constrains the filters of different subjects
to be the same. A multi-component formulation of
CorrCA is:

maximize
Vs

N∑
i=1,i̸=j

N∑
j=1

Tr
(
VT

sRijVs

)
subject to

N∑
i=1

VT
sRiiVs = IK,

(10)

where the columns of Vs ∈ RC×K are the shared fil-
ters. From this definition, it is clear that (10) can
be viewed as a straightforward multi-view extension
of the (2-view) CCA in (4) with an extra constraint
W1 = . . .=WN = Vs. One can show thatCorrCA can
also be viewed as a MAXVAR-GCCA with an addi-
tional constraint that all data views share the same fil-
ter (compare with (7)):

minimize
Vs,S

N∑
n=1

∥S−XnVs∥2F

subject to STS= IK,

(11)

which is more insightful since it also gives a well-
defined shared subspace. Equations (10) and (11) are
equivalent (up to a scaling factor), and their optimal
solutions can be obtained by horizontally stacking the
GEVCs corresponding to the K largest GEVLs of the
following GEVD problem (appendix B): N∑

i=1

N∑
j=1

Rij

Vs =

(
N∑

i=1

Rii

)
VsΛ. (12)
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A conceptual illustration ofMAXVAR-GCCA and
CorrCA can be found in figure 2(b). The constraint
that the filters of different views should be the same
reduces the parameters in the model and thus mit-
igates the overfitting problem when there is insuf-
ficient data. However, this constraint also imposes
limitations on the applicability of the model, as it
requires the views to have the same dimension (e.g.
same number of EEG channels per subject). In com-
parison, GCCA allows different views to have differ-
ent dimensions, so it can potentially be used to jointly
analyze correlations across different data modalities
or, for example, when a different number of chan-
nels or setup is used per subject. In addition, GCCA
can toleratemisalignments between the data of differ-
ent subjects to some extent by additionally using tem-
poral filters. CorrCA, however, requires exact tem-
poral alignment of the different signals for an optimal
performance, even with spatial-temporal filters.

3.4. Filter design
In this study, we used spatial-temporal filters by
default. If the data is one-dimensional, then they
automatically reduce to temporal filters. For CCA, the
filters applied to the video feature(s) had Ly = 15 lags,
capturing information from the preceding 500 ms of
video content.We included Lx = 3 lags in the filters of
EEG signals, encompassing information from the pre-
vious, current, and next sample (i.e. from−33.3ms to
33.3 ms). In GCCA or CorrCA, the filters had Lx = 5
lags, ranging from the past two samples to the next
two samples (i.e. from−66.6 ms to 66.6 ms).

3.5. Evaluationmetrics
We used 10-fold cross validation to evaluate the per-
formance of the algorithms. Each dataset was divided
into 10 folds, with each fold used as the test set once
while the remaining folds served as the training set.
The results on the test sets were averaged across 10
folds. In the stimulus-aware video-EEG analysis, we
applied the filters obtained using CCA in the train-
ing stage to the test set. For each canonical compon-
ent pair k, we computed the Pearson correlation coef-
ficient ρk between the transformed features and the
transformed EEG signals. In addition to analyzing
the results of individual canonical components, it is
also valuable to evaluate the performance of multiple
canonical components collectively. To achieve this, we
utilized the total squared correlation (TSC) metric
proposed in [31]:

Θ=

min{C,Dy}∑
k=1

ρ2k, (13)

which is related to the proximity of the EEG and video
feature spaces. A higher value indicates a closer cor-
respondence. However, in this study, we were less
interested in the distance between the original EEG

and video feature spaces, as it may be heavily affected
by noise. Therefore, we used a slightly modified ver-
sion of the TSC metric to consider only the first K
(K = 2 in the video-EEG analysis) canonical compon-
ent pairs that were less affected by noise:

Θ=
K∑

k=1

ρ2k. (14)

In the multi-subject EEG analysis, we applied
GCCA or CorrCA filters to transform the EEG signals
of each subject. We then calculated the inter-subject
correlation (ISC) for each component by averaging
the pairwise correlations between the transformed
EEG signals of two subjects, considering all possible
subject combinations [17]. Similar to the stimulus-
aware video-EEG analysis, we used the TSC metric
(K = 4) to jointly consider multiple canonical com-
ponents of two subjects. By averaging the TSC values
across all subject pairs, we obtained the inter-subject
total squared correlation (ISTSC).

To assess the significance of the results, we
employed a permutation test. The null hypothesis
assumed that the transformed data views were uncor-
related. To simulate this scenario, we first obtained
the transformed data with the trained filters, and
then created the permuted copies by randomly shuff-
ling the transformed EEG samples (or/and the trans-
formed features) 1000 times. The p-valuewas determ-
ined as the proportion of absolute correlation coeffi-
cients (or ISC values) calculated from the permuted
data that exceeded the correlation between the ori-
ginal transformed data. If the p-value was below the
α-level (set to 0.05), we rejected the null hypothesis
and concluded that the correlation was statistically
significant.

For comparing the performance of different fea-
tures, we employed the paired Wilcoxon signed-rank
test, a non-parametric statistical hypothesis test for
comparing paired observations. In our study, pairs
could be, e.g. a pair of TSCs obtained with two
different features for a subject. The null hypothesis
assumed that themedian difference between the pairs
of observations was zero. In two-sided tests, the
alternative hypothesis was that the median difference
was not equal to zero. We primarily used one-sided
tests in this study, where the alternative hypothesis
was that the median difference was greater (lower)
than zero. We applied a Bonferroni correction when
multiple comparisons were performed.

The quality of the features can also be evalu-
ated based on their performance in a specific task.
A common practice involves using these features in
a MM task [13, 32]. An illustration of the MM task
is shown in figure 3. In this study, we trained the
filters of the EEG signals and video features using
CCA, and divided the test set into Ns 1-min EEG and
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Figure 3. An illustration of the MM task. Given an EEG (video) segment, create segment pairs containing the matching and a
non-matching video (EEG) segment. For each segment pair, decide which video (EEG) segment matches the EEG (video)
segment.

video segments. For each EEG segment in the test set,
there were (Ns − 1) test pairs, where each pair con-
sisted of the matching video segment combined with
a non-matching segment. We applied filters obtained
in the training stage and computed the correlations
between the transformed EEG segment and the two
transformed video segments, respectively. The video
segment with a higher correlation was selected as
the match. The total number of tests conducted was
Ns(Ns − 1), and the error rate was calculated as the
proportion of incorrect decisions. We also analyzed
the dual problem, i.e. for each video segment, we cre-
ated EEG segment pairs and performed the MM task.
The error rate was averaged across 10 folds.

3.6. Interpretation of weights
Correlation coefficients and TSCs provide valuable
insights into the degree of correlation between data
views or the proximity of data spaces. However, to
gain further understanding, we can also look into the
weights of the filters. For temporal filters, a conven-
tional practice to interpret the weights is to plot the
frequency response, which shows the frequency com-
ponents that are amplified or attenuated by the filter.
Regarding spatial filters, an intuitive way is to identify
the channels with the highest contribution by look-
ing at the absolute values of the weights and then loc-
ate the regions of interest. However, as argued in [33],
this approach can be misleading since channels that
are not highly relevant to the extracted components
may also receive large weights due to, e.g. noise can-
celling. A better approach is to compute the forward
models, which involves reconstructing the original
EEG signals from the extracted components, and then
plot the topographic maps of the weights of the for-
ward models (for both the video-EEG and multi-
subject EEG analysis). The extracted components are
better reflected in channels with larger (unsigned)
weights. As the unrelated EEG background noise can,
in theory, not be predicted from these components,
these forward models purely reflect the stimulus-
related contributions and not the noise.

For CCA, following the notations in section 3.2
and adding subscripts to matrices to specify the sub-
ject, we define the transformed individual EEG sig-
nal as Sn = XnWn ∈ RT×K and the individual forward
model as Fn ∈ RC×K for subject n. The forwardmodel
can be computed by solving the following LS problem:

min
Fn

∥Xn − SnFTn∥2F. (15)

The solution is

Fn = X
T
nSn

(
STnSn

)−1
= XT

nXnWn

(
WT

nX
T
nXnWn

)−1
.

(16)

For GCCA (and CorrCA), we reconstruct signals
from the shared subspace S and define an averaged
version of the forward model F as

min
F

∥∥∥∥∥∥∥
X1

...
XN

−

S...
S

FT
∥∥∥∥∥∥∥
2

F

. (17)

Making use of the constraint that STS= IK and a KKT
condition XT

nS= XT
nXnWn of (7), the solution can

be obtained as:

F=
1

N

N∑
n=1

XT
nXnWn =

T

N
DW. (18)

Note that when using spatial-temporal filters, the
form of the forward models will be slightly differ-
ent from (16) and (18) since S (and Sn) will be com-
puted from a lagged version of Xn. For each compon-
ent, we can generate a topographic plot illustrating
the weights of the forward model. To ensure clarity
in visualization, we always plot the absolute values of
the weights.

4. Results

4.1. Mind shot cuts
Using the MrBean dataset, we first show that the shot
cuts in the videos lead to prominent peaks in AvgFlow
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Figure 4. Comparison of CCA between EEG and video stimulus using AvgFlow, AvgTempCtr, and the binary shot cut feature for a
representative subject in the MrBean dataset. The features are presented on the left of each subfigure, and the corresponding
forward models and correlation coefficients of the first two canonical components are plotted on the right. All plotted
components are significant. With the binary shot cut feature, the correlation coefficients are higher or comparable to those
obtained by CCA with AvgFlow and AvgTempCtr. The forward models also share similar patterns when using the three different
features.

and AvgTempCtr, which actually dominate the correl-
ations found by CCA.

An underlying assumption in Gunnar-Farneback
Optical Flow (section 3.1.1) is that the objects in
a video sequence tend to move coherently and
smoothly, which is clearly violated when there is a
shot cut. Most of the pixels in the previous frame
will have large displacement or even have disap-
peared in the next frame, resulting in a spurious
peak in AvgFlow (figure 4(a)). Similarly, shot cuts
usually lead to large intensity changes, resulting in
similar peaks in AvgTempCtr (figure 4(b)). To auto-
matically identify these peaks, we used a peak detec-
tion algorithm (find_peaks [34]) on the AvgFlow (or
AvgTempCtr) feature, yielding 124 (or 125) promin-
ent peaks. To verify that these peaks correspond to
shot cuts, we applied a shot change detection method
(AdaptiveDetector() from the PySceneDetect library
[35]) to the video, which returned 127 time points of
the shot cuts. Out of the 124 peaks in AvgFlow (and
125 peaks in AvgTempCtr), 122 (and 124, respect-
ively) were matched with the shot cuts.

Since the amplitude of the peaks caused by shot
cuts no longer indicates the magnitude of velocity or

the temporal intensity change, these peaks should be
treated as artifacts. Therefore, apart from applying
CCA to the original features, we explored a second
setting where we first identified shot cuts based on
the results of the shot change detection function.
Subsequently, we removed one second of data before
and after each shot cut, and performed CCA again.
This procedure resulted in a loss of approximately 4
min of data, which accounted for less than 20% of
the entire dataset, and allows to probe the correla-
tions with AvgFlow and AvgTempCtr when no shot
cuts are present. Thirdly, instead of removing shot
cuts, it is also interesting to see what would happen
if we exclusively retain shot cut information. For this
purpose, we designed a binary shot cut feature that
assigned a value of 1 if a shot cut was present in the
corresponding frame, and 0 otherwise (figure 4(c)).
In this third setting, we used CCA to correlate the
binary shot cut feature with EEG signals. We present
topographic plots of the forward models in three set-
tings for a representative subject in figure 4. The res-
ulting correlations for the first two canonical com-
ponents, under three settings, for all subjects are
shown in figure 5.
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Figure 5. The per-subject Pearson correlation coefficients of the first two canonical components (CC) obtained on the MrBean
dataset with CCA under three settings: 1) correlating original AvgFlow (AvgTempCtr) features with EEG signals; 2) correlating
AvgFlow (AvgTempCtr) features with EEG signals when shot cuts are removed (both from EEG and the features); 3) correlating
binary shot cut features with the EEG signals. The dots represent per-subject correlations, and the bars indicate the mean and
standard deviation of these correlations. The horizontal dashed lines show the significance level and non-significant correlations
are marked in red.

We can observe in the topographic plots (figure 4)
that the forward models of the canonical compon-
ents obtained with AvgFlow, AvgTempCtr, and the
binary shot cut feature are similar to each other. In
figure 5, by comparing the results of the first two set-
tings, we can see that the correlations drop drastic-
ally and even become non-significant after remov-
ing the shot cuts, both for AvgFlow and AvgTempCtr.
In contrast, the correlations obtained with the bin-
ary shot cut feature are comparable to or even higher
than the ones obtained with the original AvgFlow or
AvgTempCtr feature. Based on these observations, we
argue that the correlations obtained with AvgFlow
and AvgTempCtr using CCA are primarily driven by
shot cuts. When shot cuts are removed from the nat-
ural videos, these features are inadequate in consist-
ently finding significant correlations, suggesting their
limited utility in capturing the temporal coupling
between EEG signals and natural single-shot videos.

Since the binary shot cut feature exhibits a strong
correlation with EEG signals, we infer that shot cuts
elicit robust (probably ERP-like) neural responses in
the brain. Given that the data of all subjects are syn-
chronized, it is expected that the EEG components
associated with shot cuts also show coherence across
subjects and can thus be captured by GCCA/CorrCA.
After removing the shot cuts, those EEG components
may again disappear or change. To test this intuition,
we applied CorrCA to the EEG data, both with and
without shot cuts removed. CorrCA was chosen as
it adds additional regularization, which is required
given the relatively small scale (24 min × 10 sub-
jects) of the dataset. Figure 6 illustrates the ISCs and
forward models of the top-10 canonical components
before and after the removal of shot cuts. The number

of significant components decreased from 10 to 6.
The vanished components may be associated with
the neural responses elicited by shot cuts, which also
implies that one factor can affect multiple EEG com-
ponents. Among the remaining significant compon-
ents, the average ISC drops by 42.7% compared to the
top 6 components with highest ISC in figure 6(a), and
the reduction may also be related to shot cuts.

These results demonstrate that shot cuts have a
significant impact on both video-EEG analysis with
the traditional AvgFlow and AvgTempCtr features and
multi-subject EEG analysis. These shot cuts lead to
significant correlations, which are useful as they could
indicate whether a subject is watching a video or not.
However, in many application scenarios, visual stim-
uli typically do not contain shot cuts. For instance,
when determining a driver’s focus on road conditions
using EEG signals and video streaming from a dash-
cam, consecutive frameswill have smooth transitions.
Moreover, figure 5 clearly shows that AvgFlow and
AvgTempCtr are unable to extract significant com-
ponents in-between shot cuts, such that more tem-
porally fine-grained estimations of levels of attention
or engagement are impossible. To confirm these intial
findings, in the next section, we will investigate the
performance of AvgFlow and AvgTempCtr in single-
shot videos, without any shot cuts, and propose
our novel object-based features from section 3.1.2 as
alternatives.

4.2. Object-based features lead to significant
correlation in single-shot videos
Starting from this section, we analyze the Single-Shot
dataset, with video clips without shot cuts. In table 2,
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Figure 6. Absolute value of the weights of the forward models and ISCs obtained by CorrCA with the EEG data of 10 subjects
watching Mr Bean with and without shot cuts. The significant components are highlighted.

we compare the performance of CCA using the ori-
ginal features AvgFlow and AvgTempCtr with their
newly proposed object-based counterparts, ObjFlow
and ObjTempCtr. It is evident that the use of object-
based features leads to substantial improvements in
robustness, i.e. the feature is able to consistently find
significant correlations in all subjects. In terms of
AvgFlow, only one subject (Subject 13) exhibits two
significant components, while only 25% of the correl-
ations across both components and all subjects is sig-
nificant. In comparison, by employing the proposed
ObjFlow, we are able to identify at least one signi-
ficant component for each subject, with 85% of the
correlations significant across both components and
all subjects. While AvgTempCtr demonstrates slightly
better robustness compared to AvgFlow, incorpor-
ating ObjTempCtr again clearly results in a drastic
improvement.

Apart from comparing the robustness across sub-
jects, we can also directly compare the strength of
correlations. From table 2, we observe that the first
canonical components do not always capture the
most correlated information in practice, although
they should theoretically. Indeed, sometimes the
second component exhibits a higher correlation,
which may be attributed to overfitting on the train-
ing set or small differences between the training and
test set. Due to these inconsistencies in the ordering

of the components (according to correlation values)
between the training and test set, it makes more sense
to consider the canonical components jointly using
TSC. The results are plotted in figure 7. To compare
the performance of different features, we conduc-
ted one-sidedWilcoxon signed-rank tests. The results
indicate that ObjFlow and ObjTempCtr exhibit signi-
ficant superiority overAvgFlow andAvgTempCtr, with
p-values< 0.001 in both cases.

These results confirm the results from section 4.1,
i.e. that the traditional AvgFlow and AvgTempCtr
are inadequate to capture the temporal correlations
between the EEG and an attended video when there
are no shotcuts. Moreover, the results clearly show
that ObjFlow and ObjTempCtr are better features
that consistently yield significant correlations. This
agrees with our intuition that the feature is more
specific and emphasizes the regions where viewers
are likely to focus. However, it is worth noting that
ObjFlow may be correlated with eye movements if
participants tracked the object during passive view-
ing. Consequently, the residual eye motion artefacts
in the EEG signals could potentially drive signific-
ant correlations (despite regressing out the EOG sig-
nals from the EEGdata), posing challenges in determ-
ining whether higher-level cognitive processes, such
as movement perception, contribute to these correl-
ations. A similar issue may arise with ObjTempCtr,
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Table 2. Pearson correlation coefficients of the first two canonical components (CC) obtained from the Single-Shot dataset with CCA
using AvgFlow, AvgTempCtr, and their object-based versions ObjFlow and ObjTempCtr. The significant correlations are in bold.

AvgFlow ObjFlow AvgTempCtr ObjTempCtr

Subject CC1 CC2 CC1 CC2 CC1 CC2 CC1 CC2

1 0.026 0.015 0.034 0.024 0.027 −0.011 0.039 0.026
2 0.013 0.010 0.062 0.019 0.015 0.006 0.068 0.023
3 0.025 0.011 0.016 0.040 0.024 0.016 0.019 0.030
4 0.013 0.012 0.069 0.016 0.012 0.010 0.067 0.023
5 0.024 0.016 0.077 0.022 0.047 0.004 0.073 0.027
6 0.000 0.027 0.057 0.042 0.024 0.022 0.050 0.030
7 −0.004 0.021 0.033 0.054 −0.004 0.023 0.035 0.045
8 0.009 0.001 0.032 0.008 0.024 −0.015 0.036 0.004
9 0.038 0.018 0.085 0.045 0.043 0.019 0.076 0.043
10 0.013 0.026 0.061 0.030 0.028 0.027 0.063 0.031
11 −0.002 0.014 0.050 0.015 0.015 0.011 0.049 0.027
12 −0.003 −0.007 0.025 0.007 −0.004 0.003 0.017 0.009
13 0.023 0.025 0.034 0.022 0.027 0.004 0.025 0.009
14 0.013 0.012 0.002 0.021 −0.001 0.020 0.001 0.015
15 0.009 0.003 0.066 0.032 0.047 0.000 0.069 0.028
16 −0.001 0.002 0.039 0.026 0.012 0.002 0.039 0.021
17 0.014 0.013 0.060 0.048 0.023 0.023 0.058 0.055
18 0.015 0.031 0.023 0.027 0.004 0.022 0.016 0.038
19 0.006 0.015 0.047 0.020 0.032 0.011 0.055 0.030
20 0.017 0.018 0.047 0.027 0.016 0.014 0.058 0.023

Figure 7. The per-subject individual TSCs (denoted by grey
dots) between the EEG signal and AvgFlow, ObjFlow,
AvgTempCtr, and ObjTempCtr in the Single-Shot dataset.
The bars indicate the mean and standard deviation of the
TSCs across subjects.

as it implicitly encodes object motion information.
Therefore, we will further investigate whether the eye
movements drive these correlations in the following
section.

4.3. Are correlations driven by eye movements?
To check whether the correlations are driven by eye
movements, we correlated the EOG signals with the
proposed object-based features and compared the
results with those obtained from EEG signals in
the Single-Shot data set. We observed a significant
decrease in TSCs of ObjFlow-EOG and ObjTempCtr-
EOG (figure 8), with p-values < 0.001. This suggests
that the leakage of EOG signals into the EEG cannot
fully explain the correlations between the EEG signals
and our features; instead, neural activities captured by

Figure 8. The per-subject individual TSCs (denoted by grey
dots) when correlating the proposed object-based features
with both EEG and EOG signals in the single-shot dataset.
The bars indicate the mean and standard deviation of the
TSCs across subjects.

EEG dominate the correlations. We conclude that eye
movements do not dominantly drive the correlations.

4.4. Object-based features perform better in MM
task
In section 4.2, we have demonstrated that object-
based features exhibit higher correlations with EEG
signals compared to traditional features. To fur-
ther demonstrate the superiority of these object-
based features in a more quantitatively verifiable set-
ting, we conducted the MM task on the Single-Shot
dataset using AvgFlow, ObjFlow, AvgTempCtr, and
ObjTempCtr, respectively, as described in section 3.5.
We retained the top 5 canonical components obtained
with CCA in the training set. In the decision-making
phase, we selected the onewith highest correlation for
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Figure 9. The per-subject individual error rates of the MM task (denoted by grey dots) using AvgFlow, ObjFlow, AvgTempCtr, and
ObjTempCtr in the Single-Shot dataset. The bars indicate the mean and standard deviation of the error rates across subjects.

Figure 10. ISCs and forward models of the top 10 EEG components obtained by GCCA in the Single-Shot dataset. The significant
components are highlighted.

each EEG-video pair, and from each pair we selec-
ted the segment with the highest correlation as the
‘matched’ segment. The error rates are presented in
figure 9. In both scenarios, i.e. matching video seg-
ments given EEG segments and matching EEG seg-
ments given video segments, object-based features
yielded lower error rates compared to their tradi-
tional counterparts, with p-values < 0.001. This fur-
ther supports the argument that the proposed object-
based features are more effective in identifying mean-
ingful temporal correlations between EEG and video
signals.

4.5. Multi-subject EEG analysis on single-shot
videos
One limitation of doing stimuli-response analysis
using CCA is that it can only be performed individu-
ally and thus cannot leverage information across sub-
jects. Withmulti-subject EEG analysis, we can extract
the shared subspace of EEG signals of all the sub-
jects, which is spanned by the coherent EEG com-
ponents that are time-locked to the video stimuli.
These coherent EEG components have higher SNR
since the asynchronous noise and background EEG
activities are suppressed. Therefore, it is informative

to show their forward models, which can reveal the
regions where these coherent EEG components are
more reflected. Given that the Single-Shot dataset is a
larger dataset (63min× 20 subjects) than theMrBean
dataset (24 min × 10 subjects) used in section 4.1,
we chose GCCA instead of CorrCA for the multi-
subject analysis. The ISCs and the forward models
(defined in (17)) of the first 10 canonical compon-
ents are shown in figure 10, and the ISTSC of the top
4 canonical components is 0.0066.

The darker parts in the topographic plots indic-
ate the regions where the coherent (across subjects)
EEG components are more prominently reflected.
Intuitively, the channels in those regionsmay bemore
relevant and contribute more to identifying correla-
tions across subjects. To validate that hypothesis, we
ranked the channels based on the absolute values of
the forward model of the first GCCA component. We
then performed a greedy forward channel selection,
starting with the highest-ranked channel and iterat-
ively addingmore channels. For each new set of chan-
nels, we reran GCCA and obtained the ISC of the first
component corresponding to that specific number
of channels. For any number of channels, a random
selection is performed 30 times, allowing to estimate
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Figure 11. Evolution of ISCs of the first component as the
number of selected channels increases using the Single-Shot
dataset. The solid blue line corresponds to the results of
greedy forward channel selection, where channels were
greedily selected based on the forward model of the first
GCCA component. For comparison, the dashed line shows
the median of different runs where channels were randomly
selected. The shaded area indicates the 5% and 95%
quantiles of the random selection.

a distribution. The ISCs of the first component versus
the number of channels are plotted in figure 11. In the
case of greedy selection (the solid blue line), using the
top 10 channels boosts the ISC of the first component
to a level comparable to using all 64 channels. With
random selection (median indicated by the dashed
line), the trend is similar, but the ISCs are almost con-
sistently lower when using fewer than 32 channels.
We therefore conclude that the weights of the forward
models are good indicators of the relevance of the cor-
responding channels. In this experiment, it appears
that the elicited neural responses are most prominent
in the occipital-temporal region.

4.6. Proportion of variance explained
A follow-up question arising from the multi-subject
EEG analysis is whether we can isolate a subset of the
obtained coherent EEG components that are dom-
inantly driven by our features. This can be achieved
qualitatively by first regressing out the features from
the EEG signals (for the entire dataset), then reapply-
ing the GCCA algorithm and identifying the com-
ponents that either disappear or exhibit substantial
changes. Results of GCCAwithObjFlow regressed out
from EEG signals can be found in figure 12. Notably,
these results closely resemble those in figure 10, par-
ticularly for the first 3 components with higher ISCs,
suggesting thatObjFlowmaynot be the dominant fea-
ture for any of them. SinceObjTempCtr is highly cor-
related with ObjFlow in our dataset (indicated by a
correlation coefficient of 0.857), the forward models
whenObjTempCtr is regressed out are similar and we
omit them for brevity.

To quantitatively assess the extent to which
coherent EEG components obtained by GCCA
can be attributed to our features, we can cal-
culate the proportion of variance in the coher-
ent stimulus responses explained by ObjFlow (or

ObjTempCtr). Specifically, the variance of the stim-
ulus responses in the k-th coherent EEG com-
ponent can be estimated by the averaged pairwise
covariance of the transformed EEG signals, i.e.
N(N−1)

2

∑N−1
i=1

∑N
j=i+1Cov(Xiwi,k,Xjwj,k), wherewi,k

denotes the k-th column of Wi. We refer to this
quantity as inter-subject covariance (ISCOV). Since
the (incoherent) background EEG components are
orthogonal across subjects, they will not influence
this ISCOV, except for a residue due to finite sample
sizes. In order to estimate the error on the ISCOV
due to this residue, we performed the following boot-
strap procedure: randomly shifting the data in the
test set across subjects with at least 10 s, using the
pre-trained GCCA filters to transform the shifted
data, and then computing the ISCOV. This procedure
was repeated 100 times, with the outcomes aggregated
across all components. Since the ISCOV is an aver-
aged value across different subject pairs, the obtained
ISCOVs can be modeled as a Gaussian distribution
according to the central limit theorem. The 95% con-
fidence interval of the ISCOV, obtained using the
shifted EEG data and serving as the error estimate, is
(−4.4× 10−9,4.3× 10−9).

Table 3 presents the ISCOVs when using the
original EEG data and using the EEG data with
ObjFlow or ObjTempCtr regressed out. From the
numbers, it appears that component 4 is most related
to our features given that the ISCOV decreases by
58.7% with ObjFlow regressed out and by 63.5%
with ObjTempCtr regressed out. It is also notable
that the ISCOVs no longer exceed the upper limit of
the 95% confidence interval for the estimation error
after regression. However, despite these reductions,
the forward model of component 4 does not exhibit
significant changes, which might imply that our fea-
tures could be coincidentally highly correlated with
the actual features driving the responses in compon-
ent 4.

To aggregate the effects across different com-
ponents, we define the total variance as the sum
of ISCOVs over the selected components. The
proportion of variance explained by ObjFlow (or
ObjTempCtr) is then computed as the complement of
the ratio between the total variance obtained using the
EEG data with ObjFlow (or ObjTempCtr) regressed
out and that using the original EEG data, i.e.

Proportion of variance explained

= 1−
∑

k ISCOV
regressed
k∑

k ISCOV
original
k

. (19)

For the top 4 most prominent coherent components
whose ISCOVs exceed the upper limit of the 95%
confidence interval for the estimation error before
regression, the proportion of variance explained is
6.9% by ObjFlow and 7.4% by ObjTempCtr. In other
words, around 93% of the variance in the coher-
ent stimulus responses remains unexplained, which
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Figure 12. ISCs and forward models of top 10 EEG components obtained by GCCA with ObjFlow regressed out from the EEG
signals in the Single-Shot dataset. The significant components are highlighted.

Table 3. ISCOVs (1× 10−8) of the first 10 canonical components (CC) obtained from the Single-Shot dataset with GCCA under three
conditions: using (1) the original EEG data; (2) EEG data with ObjFlow regressed out; (3) EEG data with ObjTempCtr regressed out. The
95% confidence interval for the estimation error is (−4.4× 10−9,4.3× 10−9).

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10

Original 4.32 3.64 2.33 0.63 0.09 0.13 0.31 0.10 0.28 0.33
ObjFlow
regressed out

4.16 3.57 2.18 0.26 0.17 0.02 0.25 0.10 0.28 0.24

ObjTempCtr
regressed out

4.11 3.56 2.21 0.23 0.16 0.03 0.22 0.11 0.28 0.24

indicates the presence of potentially more dominant
yet undiscovered features.

5. Discussion

5.1. Shot cuts highly influence temporal
correlations
In [36], the authors observed that the ISC based on
fMRI recordings is different during the viewing of
unedited and edited videos of dance performance.
The unedited version represented a continuous view
captured from a single camera, while the edited ver-
sion consisted of concatenated shots from different
cameras, therefore included shot cuts. The authors
calculated ISCmaps for each video and found that the
two individual maps (edited vs unedited) exhibited
broad overlap, but the edited version showed more
significant voxels. These findings align with our own
results in section 4.1, where we discovered that in the
multi-subject analysis, the correlations were stronger
when shot cuts were present and decreased signific-
antly when shot cuts were removed. Additionally, we
also observed substantial overlap in the forwardmod-
els of the first components when comparing the res-
ults with or without shotcuts (figure 6).

In a recent study by Nentwich et al [37], par-
ticipants were presented with natural videos while
neural responses were recorded using intacranical
EEG (also known as electrocorticography) with 6328
electrodes implanted throughout the entire brain.

The analysis was performed channel-wise on an
average brain: they extracted the broad-band high-
frequency amplitude (BHA) ranging from 70 to
150 Hz and modeled the BHA of each channel as a
convolution of the visual stimulus and an unknown
TRF, which can be estimated using LS. While the
primary focus of their research was on investigat-
ing the effects of semantic changes, there was a
finding relevant to our study: they observed that
a greater number of channels responded to film
cuts compared to visual motion calculated using
optical flow. This finding supports our conclusion
that shot cuts dominate correlations in video-EEG
analysis especially when using the traditional, non-
object based versions of the optical flow and temporal
contrast.

In earlier EEG studies with natural video foot-
age as stimuli such as [17, 20, 21], the shot cuts
were not removed and their effect was not the focus.
Therefore, it is likely that the correlations found in
these studies were almost exclusively driven by shot
cuts. In [20], it was noted that the highest and the
most sustained ISC coincided with the video segment
having the most scene changes in the example video
clip, which aligns with our argument. While in cer-
tain cases, e.g. using the correlation as a marker of
engagement [17], the origins of the correlations may
appear less important, it is advisable to be aware of
the impact of shot cuts since they elicit strong neural
responses that could potentially overshadow more
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Figure 13. Comparison of forward models obtained using CCA with ObjFlow and ObjTempCtr for a representative subject in the
Single-Shot dataset. For these two significant components, the forward models are highly similar.

intricate responses related to higher-level cognitive
processes.

5.2. Interpretation and relations of optical flow and
temporal contrast
In our experiments, both ObjFlow and ObjTempCtr
lead to higher correlations with the EEG signals
and lower error rates in the MM task. However,
there is no significant difference in the perform-
ance of these two features. The p-value of the two-
sided paired Wilcoxon signed-rank test on the TSCs
obtained using ObjFlow and ObjTempCtr yields 0.90.
The error rates when matching video segments given
EEG segments and matching EEG segments given
video segments are also not significantly different,
with p-values of 0.14 and 0.59, respectively. Notably,
the forward models exhibit remarkable similarity
for these two features, as shown in figure 13 for
a representative subject. Furthermore, stacking the
two features together as a two-dimensional time
series and inputting it into CCA does not show
any significant difference either. These outcomes are
probably attributed to the high correlation between
ObjFlow and ObjTempCtr within our video dataset,
as indicated by a correlation coefficient of 0.857. The
high correlation comes as a surprise since ObjFlow
and ObjTempCtr seem to be unrelated, representing
motion and intensity changes, respectively. However,
one can show that the two features are implicitly
coupled, posing challenges in distinguishing their
individual effects on the EEG signals (appendix C).

Therefore, based solely on the results obtained
from the current dataset, we cannot conclusively
determine the driving factor behind the observed cor-
relations. While this issue is not the primary focus
of our paper, we highlight it to emphasize the non-
trivial nature of identifying the underlying causes of
correlations when using natural videos. One feature
could encode information of features with very dif-
ferent physical meanings, and it is difficult to dis-
entangle their effects using uncontrolled visual stim-
uli. Additionally, if one feature works well in certain
videos but not in others, it suggests that the feature
may coincidentally correlate with the true feature that
elicits the neural responses. Therefore, the diversity of

videos in the training set is important for the correct
interpretation of features.

5.3. Interpretation of neural patterns
Research on human movement perception also
provides valuable insights into the interpretation of
our results, particularly regarding the activation pat-
terns observed in certain brain areas. For example,
Grosbras et al conducted a meta-analysis combin-
ing fMRI results from multiple studies focused on
three categories of motion: face, hands, and whole
body movements [38]. They applied the activation
likelihood estimation method with random effect
analysis to generate a probability map reflecting the
likelihood that a particular voxel was activated. Their
findings revealed convergence of brain activation in
the occipito-temporal and fronto-parietal regions
across all categories, although with different peak
locations and extents. In [39], dancers were asked to
perform specific movements while detailed move-
ment features were gathered using accelerometers.
Videos of these dancers were shown to fMRI parti-
cipants, and the collected data were analyzed. The
researchers discovered that low-level features such as
acceleration corresponded to brain regions associated
with early visual and motion-sensitive areas. On the
other hand, mid-level features such as dynamic sym-
metry mapped to the occipito-temporal cortex, pos-
terior superior temporal sulcus, and superior parietal
lobe. These findings could provide an explanation on
why, in our forward models obtained with ObjFlow
using CCA (e.g. figure 13(a)), the occipito-temporal
and fronto-parietal regions exhibited higher levels of
activation compared to other areas. However, as dis-
cussed in section 5.2, the activation of certain regions
may also be related to the perception of brightness. It
was found in [40] that the neural responses in the stri-
ate cortex explicitly encode brightness changes, which
could be an additional explanation for the activation
of the occipital area.

5.4. Potential usage of object-based features
Object-based features provide more refined repres-
entations, leading to higher and more reliable cor-
relations with the EEG signals. These correlations
could be employed as a metric for overall attention
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levels or engagement [22]. While our current focus
is on single-object videos, in more intricate scenes
involving multiple objects interacting, the proposed
object-based featuresmay still prove useful for decod-
ing visual attention. Indeed, in [41], the results indic-
ated that participants’ selective attentionmechanisms
operated efficiently, being able to isolate and focus
on the object of their choice despite the presence
of multiple objects embedded within complex back-
grounds in each scene. Therefore, by correlating fea-
tures extracted from different objects with the EEG
signals, it may be possible to determine the object
of interest and detect shifts in visual attention. An
expected constraint is that the signatures of differ-
ent objects should be sufficiently distinct, otherwise
the results for different objects may be too similar.
Apart from decoding the attention towards a specific
object, it is also desirable to measure the overall level
of attention, potentially also in a multi-object set-
ting. However, fusing the features extracted from dif-
ferent objects is a challenging problem that requires
further investigation. For example, it is expected that
the decoding process in EEG analysis is intricately
influenced by the holistic interaction among diverse
objects in the scene, as well as the attention and gaze
direction of the subject. Exploring these confounding
factors and variables becomes imperative for a com-
prehensive understandingwhen deciphering complex
scenes from EEG data.

5.5. Quest for novel video features
Observing figure 6, we noted a decrease in ISCs and
the number of significant components when shot cuts
were removed from theMrBeandataset.Nevertheless,
it is encouraging that there are still significant correla-
tions remaining, indicating that the neural responses
related to shot cuts are not the sole factors coherent
across subjects. The same holds true for the Single-
Shot dataset, where multiple significant compon-
ents were found despite the absence of shot cuts in
the videos (figure 10). This motivates the quest for
novel video features that are not solely driven by shot
cuts and can capture these components. The object-
based features we have proposed are limited by their
constraint on the number of objects in each frame.
Furthermore, these features explain only approxim-
ately 7% of the variance in the coherent stimulus
responses across subjects (section 4.6), suggesting
that there are potentiallymore dominant features that
are yet to be discovered. This is not particularly sur-
prising, as both optical flow and temporal contrast are
still relatively low-level features. It could be benefi-
cial to leverage knowledge from computer vision and
representation learning to investigate higher-level and
more abstract features. Such features could poten-
tially prove useful across a wide range of videos.

6. Conclusion

This study focused on identifying temporal correl-
ations between natural video footage and EEG sig-
nals, for which two new datasets were collected. The
MrBean dataset used a film clip that contains many
shot cuts as the stimulus, while in the Single-Shot
dataset the videos were carefully selected to be shot
cut-free and to contain only a single moving object.
We revealed that the correlations between video fea-
tures such as optical flow and temporal contrast and
the EEG signals, which were reported in previous
studies, were heavily influenced by shot cuts present
in the videos, leading to over-optimistic correlations
between both modalities. We showed that removal of
such shot cuts result in non-significant correlations
in the majority of the subjects. We proposed the use
of object-based features as a more robust alternative,
resulting in significant correlations with the EEG sig-
nals across all subjects, even in the absence of shot
cuts. Importantly, we showed that the observed cor-
relationswere not predominantly driven by eyemove-
ments, which are usually considered as confounds.
Furthermore, we demonstrated that the proposed
object-based features were more effective in the MM
task, yielding lower error rates compared to tradi-
tional features. Finally, we illustrated that the pro-
posed features did not dominantly drive the coherent
stimulus responses, and more influential features are
yet to be discovered.

For future research, there are several promising
directions worth exploring. Firstly, we can shift from
linear models to non-linear models to capture more
complex relationships between video features and
EEG signals. Secondly, exploring higher-level video
features, whether with or without semantic mean-
ings, may provide insights on how the brain processes
more abstract information. Lastly, applying the pro-
posed object-based features in a multi-object setting
would reveal their effectiveness in decoding atten-
tion towards specific objects within complex visual
scenes.
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Appendix A. Filters in preprocessing

In the preprocessing pipeline, we applied a high pass
filter with a cutoff frequency of 0.5 Hz and a notch
filter at 50 Hz. Both filters are zero phase and have a
finite impulse response, designed using the window
method (a Hamming window with 0.0194 passband
ripple and 53 dB stopband attenuation). The specific-
ations for each filter are as follows:

• High pass filter
– Lower passband edge: 0.50
– Lower transition bandwidth: 0.50 Hz (−6 dB
cutoff frequency: 0.25 Hz)

– Filter length: 6.6 s
• Notch filter
– Lower passband edge: 49.38
– Lower transition bandwidth: 0.50 Hz (−6 dB
cutoff frequency: 49.12 Hz)

– Upper passband edge: 50.62 Hz
– Upper transition bandwidth: 0.50 Hz (−6 dB
cutoff frequency: 50.88 Hz)

– Filter length: 6.6 s

It is worth noting that before downsampling, a low
pass filter was implicitly applied to avoid aliasing.
The low pass filter, according to the documenta-
tion of the MNE-Python package [23], is a brick-
wall filter applied in the frequency domain at 15 Hz
(the Nyquist frequency of the desired new sampling
rate).

Appendix B. Equivalence of (10) and (11)

In this section, we show that the solutions of (10)
and (11) are the same up to a scaling factor. We
start with the solution of (10). The Lagrange function
of (10) is:

L1 (Vs,Λ1) =
N∑

i=1,i̸=j

N∑
j=1

Tr
(
VT

sRijVs

)
−Tr

(
Λ1

T

(
N∑

i=1

VT
sRiiVs − IK

))
.

(20)

The KKT conditions for Vs to be optimal are then
given by: N∑

i=1

N∑
j=1

Rij

Vs =

(
N∑

i=1

Rii

)
Vs (Λ1 + IK) , (21a)

N∑
i=1

VT
sRiiVs = IK. (21b)

By left multiplying (21a) by Vs
T and using (21b),

the objective function of (10) can be simplified as
Tr(Λ1). Therefore, the optimal Vs is the horizontal
concatenation of the GEVCs corresponding to the K
largest GEVLs of the GEVD problem (21a) (up to
orthogonal transformations). The correct scaling of
the GEVCs is determined by (21b).

Similarly, for (11), wewrite down the Lagrangian:

L2 (Vs,S,Λ2) =
N∑

n=1

Tr
(
(S−XnVs)

T
(S−XnVs)

)
−Tr

(
Λ2

T (STS− IK)). (22)

The KKT conditions for optimal Vs and S are:

N∑
n=1

Xn
TS=

(
N∑

n=1

Xn
TXn

)
Vs, (23a)

S(NIK −Λ2) =
N∑

n=1

XnVs, (23b)

STS= IK. (23c)

Plugging (23b) into (23a) yields: N∑
i=1

N∑
j=1

Rij

Vs =

(
N∑

i=1

Rii

)
VsΛ̃2, (24)

with Λ̃2 = (NIK −Λ2). Using (23a) and (23c), the
objective function of (11) can be written as N[K−
Tr(
∑N

i=1Vs
TRiiVs)]. From (23b) and (23c), we have

Λ̃
T
2 Λ̃2 = N(

∑N
i=1

∑N
j=1Vs

TRijVs). Combining it

with (24) yields N(
∑N

i=1Vs
TRiiVs) = Λ̃2. Therefore,

minimizing the objective function is equivalent to
maximizing Tr(Λ̃2). Then, again, the optimal Vs is
the horizontal stack of the GEVCs corresponding
to the K largest GEVLs of the GEVD problem (24).
The scaling factor is determined by (23c). As (21a)
and (24) represent the same GEVD problems, the
solutions of (10) and (11) are identical up to a scaling
factor.

Appendix C. The coupling between optical
flow and temporal contrast

To illustrate the implicit coupling between ObjFlow
and ObjTempCtr, we start with the calculation
of velocity vectors in optical flow, which usually
involves making assumptions on the pixel intens-
ity. Take the Gunnar-Farneback Optical Flow [24]
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as an example. The algorithm is based on polyno-
mial expansions, approximating the intensity Im(z)
of some neighborhood of each pixel in the m-th
frame with, e.g. a local quadratic polynomial Im(z) =
zTAm(z)z+ bm(z)

Tz+ cm(z), where z denotes the
two-dimensional pixel coordinate. The local para-
meters {Am(z),bm(z), cm(z)} of this model for frame
m can be estimated using weighted LS. The algorithm
then tries to find the displacement vector of each pixel
dm(z) under the assumption that Im(z) = Im−1(z−
dm(z)). By matching the coefficients of the two poly-
nomials, we can derive dm(z) as

dm (z) =−1

2
Am−1 (z)

−1
(bm (z)− bm−1 (z)) . (25)

The velocity vector vm(z) can then be obtained by
multiplying dm(z)with the sampling frequency of the
video fs.

Additionally, the coefficient matching yields
the following two equations: Am(z) = Am−1(z)
and cm(z) = cm−1(z)+ dm(z)

TAm−1(z)dm(z)−
bm−1(z)

Tdm(z). Since in practice Am(z) = Am−1(z)
generally does not hold, the approximation [Am(z)+
Am−1(z)]/2 is usually used for both Am(z) and
Am−1(z). If we follow the assumptions of Gunnar-
Farneback Optical Flow and utilize the derived
equations, the temporal contrast can be expressed in
terms of the displacement vector and the coefficients
of the quadratic polynomial:

∆Im (z) = | − 2dm (z)TAm−1 (z)
Tz

+ dm (z)TAm−1 (z)dm (z)− bm−1 (z)
Tdm (z) |,

(26)

which clearly shows the interdependence between
optical flow and temporal contrast
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